本实用新型属于新能源电池盒技术领域,提供了一种集成热管理结构的电池盒,包括电池盒内板以及电池盒外板,电池盒内板上一体压铸形成水冷流道,水冷流道布置在电池盒内板侧面四周和底面上,在电池盒外板的其中一端侧上具有出水接口和进水接口,出水接口、进水接口与水冷流道相互连通,电池盒外板与电池盒内板组配连接,电池盒外板的内侧与电池盒内板侧面匹配后水冷流道形成封闭通道,电池盒内板以及电池盒外板的端面连接处一圈具有密封区。本实用新型的优点在于该电池盒构成水道通道的结构简单,密封区域仅在电池盒出口端面,采用螺纹连接,可维修性较高,该电池盒内外板采用压铸工艺生产,解决型材工艺电池盒连接方案复杂,水道布置困难的问题。
本实用新型属于燃料电池汽车技术领域,本实用新型的第一方面提出了一种热管理系统,用于燃料电池汽车的发动机,包括与发动机并联的散热器和补偿水泵以及电子控制单元,电子控制单元用于监控发动机的出水温度和进水温度,电子控制单元与补偿水泵电连接,当出水温度和进水温度之差未达到预设温度时电子控制单元控制补偿水泵开启。本实用新型提出的热管理系统通过设置电子控制单元以及并联的补偿水泵提高散热器的散热能力使布置紧凑,同时补偿水泵还能够避免提高散热器风扇的转速,而使用补偿水泵提高散热器的水路流量来提高散热性能,并且在加注冷却液的过程中利用补偿水泵快速排空发动机内部的空气,时间短效率高。
本发明属于燃料电池车辆技术领域,具体涉及一种燃料电池的热管理方法、装置及系统。本发明的燃料电池的热管理方法包括如下步骤:获取车内的当前温度值;根据车内的当前温度值低于第一预设的温度值,控制发动机的冷却液与车内的第一散热器的制冷剂交换热量。根据本发明的燃料电池的热管理方法中,根据车内的当前温度值低于第一预设的温度值,控制发动机的冷却液与车内的第一散热器的制冷剂交换热量,充分利用燃料电池发动机余热,将散热器冷却液热量引入车内,对车内进行加热,使换热效率增加,节约能量,用于整车冬季采暖需求。
本发明公开了一种电子设备热管理微结构,包括上层PCB和下层PCB,上层PCB与下层PCB叠放键合;上层PCB布设有蒸发室、冷却室以及用于气态冷却工质传输的微型流道Ⅰ,微型流道Ⅰ连通上层PCB蒸发室与冷却室;下层PCB布设蒸发室、冷却室、用于液态冷却工质传输的微型流道II以及为液态冷却工质提供驱动力的微型泵,微型流道II连通下层PCB蒸发室与冷却室,微型流道II的入口和出口分别与微型泵连接;上层PCB蒸发室与下层PCB蒸发室之间通过纳米多孔蒸发薄膜隔开,上层PCB冷却室与下层PCB冷却室之间通过半透薄膜隔开;上层PCB冷却室和下层PCB蒸发室均布设有贯通PCB的金属柱体阵列。本发明解决了现有电子设备散热技术中遇到的问题,改善了电子设备的性能和稳定性。
本发明公开了一种电子设备热管理微结构,包括上层PCB和下层PCB,上层PCB与下层PCB叠放键合;上层PCB布设有蒸发室、冷却室以及用于气态冷却工质传输的微型流道Ⅰ,微型流道Ⅰ连通上层PCB蒸发室与冷却室;下层PCB布设蒸发室、冷却室、用于液态冷却工质传输的微型流道II以及为液态冷却工质提供驱动力的微型泵,微型流道II连通下层PCB蒸发室与冷却室,微型流道II的入口和出口分别与微型泵连接;上层PCB蒸发室与下层PCB蒸发室之间通过纳米多孔蒸发薄膜隔开,上层PCB冷却室与下层PCB冷却室之间通过半透薄膜隔开;上层PCB冷却室和下层PCB蒸发室均布设有贯通PCB的金属柱体阵列。本发明解决了现有电子设备散热技术中遇到的问题,改善了电子设备的性能和稳定性。
本发明提供了一种用于发动机SCR热管理系统的排气节流装置,所述排气节流装置设置于SCR后处理装置前端的排气管,并且所述排气节流装置包括:支撑在排气管内部的中心轴;多个扇叶轴,所述多个扇叶轴分别沿径向方向从外侧穿透所述排气管并以可转动的方式插置在所述中心轴内;多个扇叶,每个扇叶分别固定地设置在对应的所述扇叶轴上;以及设置在所述排气管外部的扇叶开度调节机构,所述扇叶开度调节机构与所述多个扇叶轴联接并且能够根据发动机控制单元的指令来控制所述扇叶轴的转动,从而调节所述扇叶的开度。本发明还提供了一种具有这种排气节流装置的发动机SCR热管理系统。
本实用新型公开了一种电动汽车动力电池的热管理系统和电动汽车,其中,热管理系统包括电池温度传感器、控制器、冷却液循环系统和制冷剂循环系统,电池温度传感器设置在动力电池(2)上,冷却液循环系统中设置有水泵(1)、水冷板(3)和换热器(8),水冷板与动力电池接触换热,制冷剂循环系统中设置有压缩机(10)、冷凝器(11)、第一膨胀阀和所述换热器,控制器用于根据电池温度传感器检测到的温度值控制水泵和压缩机的工作。本实用新型通过设置制冷剂循环系统对动力电池进行散热,可以保证在环境温度较高的情况下仍能对动力电池进行有效散热,保证动力电池的温度不会过高。