本发明公开了一种基于金属相变材料的动力电池热管理系统,包括电池模块箱以及开有通孔的模块箱顶盖,所述电池模块箱内还放置有至少三块的电池单体,电池单体之间形成的空隙中设置有基于金属相变材料的烧结热管,基于金属相变材料的烧结热管包括蒸发端和冷凝端,蒸发端设置在电池单体之间形成的空隙中,冷凝端通过通孔伸出电池模块箱;蒸发端的管壁包括外层、包裹在外层中的内层以及填充在内层和外层之间的第一中间层,第一中间层的材料为金属相变材料,内层和外层的材料为金属铜或者铝;冷凝端的管壁为螺纹结构。本发明解决了利用热管散热的动力电池,其散热效果仍然不理想,能量利用率亦不高的问题。
本发明公开了一种基于脉动热管的电池热管理系统,包括箱壁上开有通孔的电池模块箱以及模块箱顶盖,所述电池模块箱内放置有若干电池单体和若干脉动热管,所述脉动热管包括蒸发端和冷凝端,所述蒸发端包括方形金属外壁、包裹在方形外壁内的圆形金属内壁以及填充在方形金属外壁和圆形金属内壁之间的金属相变材料夹层,所述冷凝端通过通孔伸出电池模块箱,所述电池单体主要由外壳包裹的电池构成,所述电池单体和脉动热管的蒸发端间隔设置,所述蒸发端贴合在电池单体的外壳上。本发明将金属相变材料及传统脉动热管进行优势互补,实现了一种新型的电池热管理系统。
本实用新型属于航空发动机热管理技术,涉及对航空发动机热管理系统控制机构的改进。本实用新型航空发动机热管理控制机构包括高压离心泵[1]、燃滑油散热器[2]、燃油计量阀[3]、温度传感器[4]、热回油计量阀[5]和电子控制器[6]。其中,在燃油计量阀[3]后的温度传感器[4]可对燃油温度进行测量后反馈给电子控制器[6],电子控制器[6]发出控制信号,通过热回油计量阀[5]控制返回飞机油箱的燃油流量。本实用新型能够对发动机的燃油温度和滑油温度进行控制,实现发动机热管理控制功能,从而大大提高了发动机工作的可靠性。
本实用新型属于航空燃油系统领域,特别是涉及到一种提高散热性能的飞机热管理系统。位于油箱中的两个互为备份的供油泵的出口与供油管路连通,并且油箱回油管路上设置有油箱回油切断阀和回油限流装置。本实用新型避免了飞机冲压引气散热对飞机外表面的破坏,简化了结构设计,满足了特殊的要求;避免了冲压引气散热方式对飞机发动机有效功率的浪费,提升了飞机效率。在供油管路上串联散热器后,提高了进入发动机入口的燃油温度,最大限度的利用了燃油热沉。特别对于高空长航时飞机,避免了燃油温度过低引发的燃油结冰风险。本实用新型热管理集成了多个分系统的散热器,在进行能量集成设计的过程中,推进了机电系统的物理集成。
本实用新型属于航空技术领域,涉及一种保证发动机供油可靠的飞机热管理系统,所述采用位于油箱中的两个互为备份的供油泵的出口与发动机供油管路连通之后分为两路:散热路和直接供油路。本实用新型设置了散热路和直接供油路,避免了串联多个散热器后的燃油压力损失;同时避免了导致发动机供油管路堵塞,引起发动机供油功能失效;并联了吸力供油路,在满足多系统散热的前提下保证了发动机供油的完整性和可靠性。本实用新型避免了传统飞机冲压引气散热对飞机外表面的破坏,简化了结构设计,避免了冲压引气散热方式对飞机发动机有效功率的浪费,提升了飞机效率。
本发明属于电器装置领域,特别涉及到一种电源热管理系统。该热管理系统由控制器、热交换器、泵、温度传感器和电源箱体组成。电池成组后,直接放入电源箱体中,箱体中流动有热交换液,可与电池组之间进行热交换。根据温度传感器上传的温度数据,控制器可实时调节泵的流量和热交换器的功率,以控制电池组的温度。整个系统结构简单,温度控制精确、自动化程度高,特别适用于高功率电池应用领域。
本发明公开了一种基于喷雾汽化的大功率激光器热管理装置及方法,热管理装置包括装设于激光器热沉上的高压喷雾室,高压喷雾室内设有喷雾嘴阵列和气压传感器,且高压喷雾室与一过渡室相邻,过渡室通过高压电动泵与高压储液罐相连,高压喷雾室底部的雾液回聚区通过高压电动泵与过渡室相连,高压喷雾室还与一排气管相连,排气管上设有泄压阀。热管理方法是利用热管理装置实现的,该方法通过维持高压喷雾室内气体制冷剂的压力恒定从而维持温度恒定以实现对激光器热沉的恒温控制。本发明的装置结构简单可靠、紧凑度高、控温准确、且运行稳定,本发明的方法简单易行、效率高、且对环境友好。
本发明涉及一种基于不同掺杂浓度增益光纤的高功率皮秒光纤激光系统,特指一种通过合理使用具有不同掺杂浓度的增益光纤来优化设计和搭建的高功率皮秒光纤激光系统。具体来说,就是在功率水平较低的预防大级中使用纤芯直径较小的高掺杂增益光纤,把皮秒种子源提供的种子光放大到一定的功率水平,作为功率放大级的信号光;最后,在功率放大级中使用纤芯直径较大的普通掺杂增益光纤,把预防大级提供的信号光放大到所要求的功率水平。相比现有的高功率皮秒光纤激光系统,该方案综合考虑了非线性效应抑制、输出光束质量、热管理等因素,是一种实现高平均功率皮秒光纤激光输出的优化方案。
本发明公开了一种焊球、包括所述焊球的球栅阵列(BGA)封装件及其热管理增强方法。焊球包括:焊料合金层;壳体,被焊球合金层包围;相变材料,位于所述壳体的内部,吸收由封装件的芯片产生的热而发生相变。根据本发明,通过在BGA封装件的焊球内部设置相变材料,可以使焊球很好地吸收芯片产生的热量而使BGA封装件的温度控制更优异。
本实用新型公开了一种脉冲光纤激光器,采用“回”字形散热通道;若干散热风扇放置于“回”字形散热通道前后两侧;光纤无源器件、电源器件、种子源及有源器件根据其尺寸和散热要求分别安装于“回”字形散热通道中,“回”字形散热通道中设置有限位挡风板,通过控制“回”字形散热通道各侧面的散热片截面尺寸和限位挡风板角度可控制进入散热片各侧面的风量。本实用新型具有加工容易、成本低廉、便于安装维护、热管理集中、散热简单高效、光电分离、布线整齐有序、可靠性高、模块化设计、便于系统扩展等特点,可以满足特殊温度条件风冷高功率脉冲光纤激光器工作要求。
本发明针对目前电池管理系统存在的问题,提供一种适用于锂离子电池和铅酸电池等作为储能介质的新能源发电、微网发电和智能电网储能系统的串联电池组管理系统,包括标准电池包、PACK保护单元、集中控制单元、CAN总线和上位机,PACK保护单元采集标准电池包中各单体电池的电压和温度信号,并控制各单体电池的均衡信号,同时SOC估算各单体电池的剩余容量,PACK保护单元产生的电压、温度、剩余容量数据通过CAN总线传输到集中控制单元集中处理并通过与集中控制单元通讯连接的上位机显示。本发明实时对储能系统进行监控和保护,克服了常用均衡控制方式的能量损耗和热问题,最大程度地延长电池寿命,充分发挥了电池的储能作用。
本发明公开了一种正十八烷相变微乳液,其包括水和以下质量分数的组分:正十八烷5%~40%,表面活性剂2%~20%,脂肪醇类0~20%和无机盐类0~3%;其制备是按照前述质量分数的比值,先将正十八烷、表面活性剂、脂肪醇类和无机盐类进行混合,在30℃~40℃温度下添加余量的水,搅拌均匀,静置后即得到正十八烷相变微乳液。本发明的正十八烷相变微乳液可应用于微电子系统热管理中,并作为热管理体系中微通道的高效散热冷却工质使用。本发明的产品及应用具有相变潜热高、适用温度范围宽、稳定性好等优点。