本发明公开了一种基于开关式水泵-辅助水泵的汽油机热管理策略方法,包括暖机工况时,热管理模块小开度,开关式水泵关闭,辅助电动水泵反转,开关式水泵-辅助水泵的汽油机的冷却系统包括缸体水套、缸盖水套、散热器和热管理模块,散热器的出水口通过开关式水泵分别连接到缸体水套的进水口和机油冷却支路进水端,缸体水套出水口分别连接到缸盖水套上水口、EGR冷却支路进水端和增压器冷却支路进水端,缸盖水套的下水口分别连接到缸体水套回水口和冷却液补充支路进水端;EGR冷却支路出水端、开关式水泵的进水口、机油冷却支路出水端和散热器的进水口分别与热管理模块连接。本发明改善整车冷启动冷却水温波动问题,提高整车标定控制精度。
本发明公开了一种混合动力汽车燃料电池热管理系统,其特征在于:包括燃料电池水回路、PTC加热水回路、空调制冷系统和乘员舱进风通道,所述燃料电池水回路和PTC加热水回路通过中间换热器换热,所述乘员舱进风通道分别与PTC加热水回路和空调制冷系统换热。本发明还提供一种混合动力汽车燃料电池热管理系统的控制方法,包括燃料电池冷启动模式和燃料电池余热回收模式。本发明当燃料电池冷启动且环境温度较低时,PTC加热水回路可以同时给燃料电池和乘员舱加热,当燃料电池温度过高时,通过PTC加热水回路进行余热回收,并与PTC加热器一道给乘员舱加热,提高了燃料电池的能量利用率,在保证燃料电池冷启动的同时又可以给乘员舱加热。
本发明公开了一种燃料电池汽车热管理系统、方法、存储介质及汽车,其系统包括:第一电子水泵进液口与燃料电池出液口连接,出液口与第一三通阀进液口连接,第一三通阀第一出液口与加热器进液口连接,加热器出液口与第二三通阀进液口连接,第二三通阀第一出液口燃料电池进液口连接,第二出液口与第二电子水泵进液口连接,第二电子水泵出液口与空调暖风换热器进液口连接,空调暖风换热器出液口与燃料电池进液口连接;第一电子水泵、第一三通阀、加热器、第二三通阀、第二电子水泵均与控制器电信号连接。本发明中控制器通过对传感器采集的数据搜集分析后控制各三通阀、电子节温器、加热器、水泵、风扇动作实现冷却液不同的循环回路。
本发明公开了一种基于热泵双空调箱的电动汽车热管理系统,包括电池冷却水系统、电机冷却水系统、空调热泵系统、乘员舱循环风回路和PTC加热系统。本发明还提供了一种基于热泵双空调箱的电动汽车热管理系统的控制方法,包括三种工作模式,1)高温充电模式;2)低温行驶模式;3)高温除湿模式。本发明的空调热泵系统为可制热的双空调箱系统,整个系统可提供多种工作模式,在高温充电模式时电池冷却效果更好,在低温行驶模式时,可根据电池温度和电机冷却水温度对电池和乘员舱加热,在高温除湿模式时,除湿效果更好,这样有效地提高了系统的能量利用率。
本发明公开了一种电动汽车热管理系统控制方法,其特征在于,包括步骤1)获取热管理系统已知参数;2)分别根据已知参数确定五个格栅开度;3)取五个格栅开度中的最大值作为格栅开度,确定格栅位置标记并记录为历史数据;4)循环步骤1)~3),根据历史数据确定格栅开度对应的标记位置。本发明充分考虑热管理系统各个参数对进气格栅开度的影响,取五个格栅开度的最大值为格栅开度,这样保证了电池冷却水系统的散热能力,使得进气格栅的开度控制更符合热管理系统实际需求,增加的对历史数据的存储和利用可以更快更准确地定位格栅开度的位置。
本发明涉及电动汽车控制技术领域,具体涉及一种电动汽车的动力域控制系统。包括动力域控制器PDC,所述动力域控制器PDC上连接有电机控制器MCU_F、电机控制器MCU_R、电池管理单元BMS、车载充电机OBC、电动压缩机Ecomp、HPTC、进气格栅电机AGS、制冷剂回路传感器和制冷剂回路阀门,所述动力域控制器PDC通过电机控制器MCU_F、电机控制器MCU_R、电池管理单元BMS、车载充电机OBC、电动压缩机Ecomp、HPTC、进气格栅电机AGS、制冷剂回路传感器和制冷剂回路阀门输入的信号实现高压管理、能量管理、热管理和扭矩管理。实现了高压管理、扭矩管理、能量管理和热管理四大功能。其能更好的集中协调控制,并能提高能源利用率。
本发明公开了一种动力电池热管理系统。它包括单体电芯、电池管理模块、DC DC模块和帕尔贴贴片,所述单体电芯的正极和负极连接DC DC模块的输出端,帕尔贴贴片两端与电池管理系统的控制端连接;电池管理系统用于在检测到单体电芯温度低于第一设定值时控制帕尔贴贴片制热、用于在检测到单体电芯温度高于第二设定值时控制帕尔贴贴片制冷、用于在检测到帕尔贴贴片的两端产生电压时控制DC DC模块将所述电压进行转换输出至单体电芯。本发明通过在锂离子动力电池组中加装一种帕尔帖效应的热管理系统,其可靠性、制冷或加热效果、能量效率较现有技术均有提升,可有效填补锂离子电池组在环境适应性、使用寿命、能量密度特性的不足,并有效降低均衡能耗。
本发明涉及一种利用整车余热的新能源汽车热管理系统,包括电机及电池散热回路,电池加热回路,乘员仓供暖回路及乘员仓制冷回路;电机及电池散热回路包括循环连通的散热器、电池包及电机机构;电池加热回路包括依次循环连通的水暖加热器、第一循环泵、电池包及电机机构;乘员仓供暖回路包括依次循环连通的加热芯、第二循环泵、电池包、电机机构及水暖加热器;乘员仓制冷回路包括依次循环连通的蒸发器、冷凝机构及第一膨胀阀。本发明旨在解决传统技术中空调系统、电机冷却系统、电池温控系统相互独立工作导致能量利用不充分、结构冗余、影响汽车续航里程的问题。
本发明公开了一种电动汽车热管理功能检测系统,包括热管理功能检测控制器和常规热管理系统控制器,热管理功能检测控制器和常规热管理系统控制器的信号输入端均分别连接有热管理功能检测指令器和温度传感器,其信号输出端均分别连接有电池循环水系统、电池加热系统、电池冷却系统和检测显示器,温度传感器旁通在电池循环水系统中,电池加热系统和电池冷却系统均通过三通换热器分别与电池循环水系统换热。本发明还公开了一种电动汽车热管理功能检测方法,包括步骤1)自循环功能检测;2)电池加热功能检测;3)电池冷却功能检测。本发明适用于高节拍的产生线,实现快速在线检测,提高了故障的检出率,有效防止故障的产生。
本发明公开了一种纯电动汽车热管理系统乘员舱优先制冷控制方法,其特征在于:包括1)进入同时制冷模式,开启电动制冷系统和电池冷却水回路;2)进入乘员舱优先制冷模式,关闭电池冷却水回路;3)保持进入乘员舱优先制冷模式;4)退出同时制冷模式,重新开启电池冷却水回路;5)保持退出同时制冷模式;6)重复循环步骤2)和步骤4),直到退出同时制冷模式。在保证动力电池安全性的前提下,优先保证乘员舱的制冷需求;系统进行频繁地切换,从而保证了系统运行的稳定性。
本实用新型提出了一种燃料电池汽车热管理系统和燃料电池汽车,其中,燃料电池汽车热管理系统包括:空调制冷回路,包括依次连通的压缩机、冷凝器、第一膨胀阀、蒸发器;动力电池冷却回路,包括依次连通的压缩机、冷凝器、第二膨胀阀、板式换热器,以及依次连通的动力电池箱、第一水泵、板式换热器,其中,空调制冷回路和动力电池冷却回路通过第一膨胀阀和第二膨胀阀的并联,共用压缩机和冷凝器。通过本实用新型的技术方案,有效地精简了在整车上布置零部件的数量,节省了空间和整车热管理系统的成本,将整车的热管理整合在一起,方便系统控制和系统介质的加注,还可以节省整车系统的能耗。
本发明涉及电动汽车热管理技术领域,具体涉及电动车热管理方法及系统。该方法包括以下步骤:S1:发出电池冷却需求的指令;S2:获取乘员舱冷却回路的运行信号,若乘员舱冷却回路运行,执行S3步骤,若乘员舱冷却回路关闭,执行S4步骤;S3:以最大流量运行电池冷却回路第一设定时间后,再启动电池热管理系统Chiller;S4:直接启动电池热管理系统Chiller,同时以最大流量运行电池冷却回路。本发明能够解决现有技术中直接开启电池制冷,降低了乘员舱制冷效果,会导致乘员舱温度急剧升高的问题。