本发明涉及一种多回路电动汽车热管理系统,包括动力电池模块、电驱总成、功率电子器件、电动水泵、膨胀水箱、电动压缩机、储液干燥壶、冷凝器、蒸发器、暖风芯体、液体加热器、电驱散热器、电池散热器、板式换热器,各组件通过管路及设于管路中的四通阀、三向阀、直通阀、膨胀阀连接形成多个分别对动力电池模块、电驱总成、功率电子器件以及乘员舱进行热管理控制的回路。与现有技术相比,本发明可使动力电池加热系统和乘员舱采暖系统共用同一个液体加热器,起到降本节能的作用;充分利用电驱总成和功率电子器件产生的热量来给乘员舱采暖和给动力电池加热,使整个热管理系统节能效果显著,可以有效提升电动汽车续航里程,改善车辆经济性。
本发明涉及一种电动汽车集成式综合热管理系统,包括动力电池组温度均衡回路、动力电池组常温冷却回路、动力电池组空调制冷回路、动力电池组加热回路、乘员舱空调制冷回路、乘员舱采暖回路、电驱模块冷却回路;动力电池组常温冷却回路、动力电池组空调制冷回路、电驱模块冷却回路和乘员舱空调制冷回路共用一个散热器进行换热,散热器的进口侧管路通过三通阀与电驱模块的出口侧管路连接,散热器的出口侧管路通过第一直通阀连接到动力电池组常温冷却回路或电驱模块冷却回路中。与现有技术相比,本发明通过集成优化的热管理回路设计,取消了空调系统的冷凝器,减少了前端模块散热器的数量,节省了布置空间,具有降成本、减重量和降能耗的优点。
本发明涉及一种节能型多回路电动汽车热管理系统,包括动力电池模块、电驱模块、外部冷凝器、液体PTC加热器、第一电动水泵、第二电动水泵、膨胀水箱、电动压缩机、储液干燥壶、散热器、蒸发器,还包括第一热交换器、第二热交换器、空气PTC加热器和内部冷凝器,各组件通过管路以及设于管路中的四通阀、三向阀、直通阀以及膨胀阀连接形成多个分别对动力电池模块、电驱模块以及乘员舱空调进行热管理控制的回路。与现有的技术相比,本发明采用了热泵原理给乘员舱供暖,不仅可采用空气热泵也可采用冷却液热泵,尽可能地降低乘员舱采暖对PTC加热器的依赖,系统节能显著,汽车续航里程显著增长,车辆经济性更佳。
本发明涉及一种充分利用废热的新能源汽车整车热管理系统,包括依次串联连接并形成循环回路的水泵、水暖PTC、暖风芯体、回热器、冷却器、动力电池、CDU、电动机冷却器、水冷冷凝器、散热器和膨胀水箱,所述水暖PTC和散热器的两端连接旁通水管,所述冷却器与水冷冷凝器之间设有制冷换热单元,所述制冷换热单元内与所述冷却器并联设置空调蒸发器。与现有技术相比,本系统可以有效利用电池废热、电机废热、压缩机耗功产生的废热,把这些热量用于乘员舱空调制热、除霜、除雾和电池加热,有效降低了水热PTC的功率需求,从而减少热管理系统的能耗,提升新能源汽车的续航里程。
本实用新型涉及一种热泵型智能化多回路电动汽车热管理系统,包括动力电池组、电驱模块、车载充电机、DC DC转换器、电池散热器、电池冷却器、电机散热器、电动水泵、电动油泵、膨胀水箱、PTC加热器、电机热交换器、电动压缩机、蒸发器、储液干燥壶、暖风芯体,还包括AC外置热交换器和内置冷凝器,通过管路以及设于管路中的四通阀、三向阀、直通阀形成多个热管理控制的回路。与现有技术相比,本实用新型系统乘员舱需要采暖时,不仅能充分利用电驱模块组件的废热,且可切换热泵空调为制热模式,能效比高,减少电量消耗,当热泵采暖无法满足超低温环境下供暖需求时,又可让PTC采暖小循环回路同时工作,满足极限工况采暖需求。
本发明涉及一种纯电动汽车舱内热管理域控制系统,包括热管理域控制器和与热管理域控制器连接的输入单元、人体感知单元、车内外环境监测单元、加热单元,所述加热单元包括设置在车舱内不同位置的多个加热元件,所述热管理域控制器与云端服务器连接,所述云端服务器中含有云端天气数据和驾乘人员的云端个人健康数据、云端个人使用习惯数据。与现有技术相比,本发明通过设置在车舱内不同位置的多个加热元件,可以根据需要进行更为细化的加热设置,满足车舱内驾乘人员不同的温度需求,既可以提升人体舒适的感觉,又可以降低车内热管理能量消耗,有利于提升驾乘人员感知质量和整车续航里程。
本发明涉及一种节能型多回路电动汽车热管理系统,包括动力电池模块、电驱模块、外部冷凝器、液体PTC加热器、第一电动水泵、第二电动水泵、膨胀水箱、电动压缩机、储液干燥壶、散热器、蒸发器,还包括第一热交换器、第二热交换器、空气PTC加热器和内部冷凝器,各组件通过管路以及设于管路中的四通阀、三向阀、直通阀以及膨胀阀连接形成多个分别对动力电池模块、电驱模块以及乘员舱空调进行热管理控制的回路。与现有的技术相比,本发明采用了热泵原理给乘员舱供暖,不仅可采用空气热泵也可采用冷却液热泵,尽可能地降低乘员舱采暖对PTC加热器的依赖,系统节能显著,汽车续航里程显著增长,车辆经济性更佳。
本实用新型涉及一种智能化多回路电动汽车热管理系统,包括动力电池组、驱动电机、电机控制器、车载充电机、DC DC转换器、电池散热器、电池制冷器、电机散热器、电动水泵、电动油泵、膨胀水箱、PTC加热器、热交换器、电动压缩机、冷凝器、储液干燥壶、蒸发器、电子膨胀阀、暖风芯体,通过管路及设于管路中的直通阀、三向阀和四通阀进行相互连接,形成多个热管理控制回路。与现有技术相比,本实用新型形成了满足不同冷却或加热需求的多个回路,这些回路根据电动汽车的动力电池组、电驱模块以及乘员舱空调的特点及工作状态进行选择性开闭,保证电动汽车的温度均衡,保证电动汽车高效运行,系统节能显著,汽车续航里程变长,车辆经济性更佳。
本发明涉及一种智能化多回路电动汽车热管理系统,包括动力电池组、驱动电机、电机控制器、车载充电机、DC DC转换器、电池散热器、电池制冷器、电机散热器、电动水泵、电动油泵、膨胀水箱、PTC加热器、热交换器、电动压缩机、冷凝器、储液干燥壶、蒸发器、电子膨胀阀、暖风芯体,通过管路及设于管路中的直通阀、三向阀和四通阀进行相互连接,形成多个热管理控制回路。与现有技术相比,本发明形成了满足不同冷却或加热需求的多个回路,这些回路根据电动汽车的动力电池组、电驱模块以及乘员舱空调的特点及工作状态进行选择性开闭,保证电动汽车的温度均衡,保证电动汽车高效运行,系统节能显著,汽车续航里程变长,车辆经济性更佳。
本实用新型涉及一种自动离线计算电池管理系统的工作精度的装置,用于检测与电池包相连的电池管理系统的工作精度,所述装置包括整车控制器、汽车部件模拟模块和热管理模块,所述整车控制器与电池管理系统连接,所述汽车部件模拟模块和热管理模块均分别与电池包和整车控制器连接。与现有技术相比,本实用新型具有结果准确、实现方便以及符合实际情况等优点。
本发明涉及一种自动离线计算电池管理系统的工作精度的方法及装置,所述方法包括:整车控制器控制汽车部件模拟模块工作;整车控制器在产生的测试时刻t处向电池管理系统发送工作命令,读取预测参数;工作命令完成时,汽车部件模拟模块停止工作;读取工作参数,计算电池管理系统的SOP测试精度εSOP;判断电池包的温度是否超过温度阈值,若是则控制热管理模块开始工作并返回判断,若否则读取稳定参数,计算得到电池管理系统的SOC测试精度εSOC;所述装置包括与电池管理系统连接的整车控制器,以及均分别与电池包和整车控制器连接的汽车部件模拟模块和热管理模块。与现有技术相比,本发明具有计算结果准确、实现方便以及符合实际情况等优点。