本发明涉及一种用于控制光源、尤其是发光二极管(LED)的电源的装置和方法。本发明的特征在于其允许不需要使用可编程DC DC转换器、而是通过为所使用的DC DC转换器系统地调节自动控制值来进行LED的热管理。
本实用新型提供了一种具有自动热管理功能的电动大巴用电池箱,包括电池箱表面的通风部位,所述通风部位由位于电池箱一面上的封板上的大于等于一个进气部位和位于电池箱对应面的封板上的大于等于一个出气部位组成,进气部位或出气部位依次为电池箱封板上的开口、移动封板和散热风扇;电池箱封板的内表面上垂直安装有滑槽,该移动封板平行卡合在滑槽的沟槽内,通过电机的驱动位移,该散热风扇固定在滑槽的沟槽内,该电机固定在电池箱封板的内表面上。本实用新型可以实现对电池箱的温度进行有效的调节和控制,自动对电池包进行热管理,确保锂离子动力电池运行在最合适的温度范围,保证车辆的正常运行。
本实用新型提供了一种具有自动热管理功能的电池仓,包括电池仓通风口、电池仓蒙皮,所述电池仓通风口包括:固定在该电池仓蒙皮上的通风散热格栅;该电池仓的内部、通风散热格栅的后方设置有垂直于蒙皮固定的滑槽;滑槽的滑槽限制部分中设置有可平行于蒙皮方向进行左右移动实现对电池仓通风口封闭与开启的可移动封板;可移动封板上连接有可旋转的电机。通过电机可对移动封板的驱动,使用可移动封板进行左右移动,从而实现对电池仓通风口封闭与开启,达到对电池仓散热与保温的控制,实现自动热管理的功能。通过在电池仓蒙皮上安装隔热材料对电池仓进行有效保温。在灰尘或者雨水较大时关闭通风口,达到防尘防水的目的。
本实用新型涉及一种适用于寒冷地区纯电动客车的电池热管理系统。包括依次设置的水箱、循环水泵和电池箱,上述部件通过水管路连接成回路,水箱内设有加热装置和第一温度传感器,电池箱内设有第二温度传感器,第一温度传感器与第二温度传感器与控制器相连,控制器的输出端与显示器相连,电池箱及水箱外分别包裹有保温装置,电池箱的一侧侧壁上设有散热片,散热片的进液口与循环水泵相连,散热片的出液口与水箱相连。由上述技术方案可知,本实用新型的循环水泵将水箱中的液体带进水管路,再经过各个电池箱,并由散热片将液体的热量传递到电池箱中,使得电池箱中的温度达到设定的温度,并可始终保持在一个适合锂离子电池工作的温度区间。
一种用于应用于复合结构上的修补区域的复合板层和粘合剂的热管理的装置使用全部与计算机化的控制系统通信的光学扫描器和投射系统、编码的摄影测量目标、编码的二维热电偶阵列和编码的加热毯的组合,所述计算机化的控制系统建立修补的复合结构、复合结构的修补区域、用于监测修补区域中的温度的热电偶和用于加热修补区域的加热毯之间的空间关系。光学扫描器和投射系统复合结构上的修补区域上方的热电偶的位置处投射热电偶的识别和热电偶的实时温度。
本发明涉及一种适用于寒冷地区纯电动客车的电池热管理系统。包括依次设置的水箱、循环水泵和电池箱,上述部件通过水管路连接成回路,水箱内设有加热装置和第一温度传感器,电池箱内设有第二温度传感器,第一温度传感器与第二温度传感器与控制器相连,控制器的输出端与显示器相连,电池箱及水箱外分别包裹有保温装置,电池箱的一侧侧壁上设有散热片,散热片的进液口与循环水泵相连,散热片的出液口与水箱相连。由上述技术方案可知,本发明的循环水泵将水箱中的液体带进水管路,再经过各个电池箱,并由散热片将液体的热量传递到电池箱中,使得电池箱中的温度达到设定的温度,并可始终保持在一个适合锂离子电池工作的温度区间。
本发明提供一种储能型纯电动汽车空调技术和系统,通过使用含有相变储冷 热材料的储能模块代替传统的纯电动车空调系统进行供冷 热,不需要额外的蒸发器和辅助电加热系统,有效减轻了电动车的负重,提高了电池的电利用率和寿命;而空调热风出口在下、冷风出口在上的设计方式更符合车内冷 热风的流动,改进供冷和供热效果;储能模块的充能过程与充电过程同时在充电站进行,充能装置利用低谷电对储能模块进行充冷 热,达到了“移峰填谷”的目的,同时降低了纯电动车空调系统的成本,适宜大规模推广使用。
一种用于冷却混合动力或电动汽车中电池的换热器,包括多个间隔开的分立的换热器面板,每个换热器面板具有冷却剂入口歧管部分、冷却剂出口歧管部分以及在入口歧管部分与出口歧管部分之间延伸的多个冷却剂流动通路。各分立的面板的入口和出口歧管部分通过管道连接以限定连续的冷却剂入口和出口歧管,它们分别具有冷却剂开口。通过分立的面板的冷却剂的流动可以通过为面板的流体流动通路设置不同的横截面面积和 或液压直径来平衡,这部分取决于每个面板相对于冷却剂开口的靠近度。在各面板由冲压板对形成的实施例中,可通过在组装过程中有意偏离各板来实现冷却剂流动通路变化的横截面面积和 或液压直径。
用于车辆动力总成的热管理单元包含集成的油加热器、控制阀和压力释放阀。远处的油冷却器连接到热管理单元的流体端口。传动油接收到热管理单元中并且导向到传动油加热器和传动油冷却器中的一者或者两者。油流中的一部分可通过压力释放阀内部分流,从而将油的压力维持在阈值以下。油流在已经被加热和 或冷却之后被导向穿过控制阀,并且正被导向穿过油加热器和油冷却器的油的比例由控制阀中油的温度确定。
本实用新型提供了一种电池包风道结构,包括:壳体;位于所述壳体内的多个电池模组;位于所述壳体上的通向各个所述电池模组的进风道;分别与各个所述电池模组连通的多个出风管;与所述出风管连通的集风管;安装在所述集风管出口的风机;与所述风机连通的电磁阀;分别与所述电磁阀连通的热管理风道和排气风道;安装在所述集风管上并与所述电磁阀连接的异常气体传感器。本实用新型还提供了一种混合动力汽车。本实用新型能够显著降低电池包风道管路结构复杂程度和成本。
本发明涉及一种基于两速电控水泵的发动机热管理控制方法及装置。该方法包括:当电控水泵置于两速模式时,根据发动机转速与负载率以及各调控子单元获取的被控参数将电控水泵设置为半速运转或者全速运转。该装置基于上述方法实现。本发明中水泵转速与发动机负荷关联,实现更加精准的控制水泵的转速;同时还可以兼顾到发动机其他热管理的需求,提高发动机工作的可靠性。
本实用新型提供一种燃料电池系统的热管理系统,该燃料电池系统包括燃料电池堆,该燃料电池堆系统还包括收容燃料电池堆的收容部,助燃气体温度调节装置;该助燃气体温度调节装置对通入燃料电池堆的助燃气体的温度进行调节;所述调节了温度的助燃气体和所述收容部中的所述燃料电池堆进行热交换,使燃料电池堆温度在各工作阶段处于预设的温度范围内。本实用新型的燃料电池系统的热管理系统具有良好的燃料电池热管理功效。