一种用于维持在封围齿轮系统的壳体中循环的流体的温度的系统、差速器和方法,包括定位在壳体内部的第一热交换器。第一隔热层联接到壳体并且具有与壳体完全接触的面。第二流体通路形成在齿轮的外表面和主要传热表面之间,用于使在壳体内循环的流体通过该第二传热通路,其中,流体借助于齿轮系统的旋转而与流过所述热交换器的第一热交换流体成传热关系。
本发明公开了一种电动汽车热管理系统及电动汽车,电动汽车热管理系统包括电驱温度控制系统、电池温度控制系统和空调系统。电驱温度控制系统、电池温度控制系统和空调系统均与汽车的整车控制器通信连接,整车控制器控制电驱温度控制系统、电池温度控制系统和空调系统的工作状态。其中,通过整车控制器同时控制电驱温度控制系统、电池温度控制系统和空调系统的工作状态,相比于电驱温度控制系统、电池温度控制系统和空调系统设置单独的控制器来进行控制,能够提高电动汽车热管理系统的能量利用效率,以及降低电动汽车热管理系统的制造成本,进而能够降低电动汽车的制造成本。
本发明公开了一种发动机热管理系统,其包括:发动机进气管、发动机进气总管、中冷器和增压器压气机,发动机热管理系统还包括:控制进气温度旁通管路,其两端分别连接中冷器入口和中冷器出口,且与中冷器并联,控制进气温度旁通管路上设置有第一旁通比例阀,通过调节第一旁通比例阀的位置比例实现不同流量的中冷前进气流量旁通;控制进气量旁通管路,其两端分别连接压气机入口和压气机出口,且与增压器压气机并联,控制进气量旁通管路上设置有第二旁通比例阀,通过调节第二旁通比例阀的开度实现不同工况的进气流量需求;以及温度传感器,其设置于发动机进气总管的管路上,用于测量进入发动机进气总管的进气温度,ECU能够采集进气温度的测量值。
一种用于控制车辆的至少一个电池上的外部热负荷的系统,该系统包括被配置成支撑车辆外部的至少一个电池的电池外壳。该外壳包括热反应部分。
本实用新型公开了一种高效热管理储能集装箱,涉及储能集装箱技术领域,智能调控主机设于高压柜和七氟丙烷柜之间且位于电池架对面;电池架的电池模块之间间隔设有若干竖向出风风管,竖向出风风管设有若干沿竖直方向均匀分布的侧向出风口,侧向出风口对应电池模块进行吹风;T型风道呈水平设置,位于T型末端的风道入口与智能调控主机的冷风出口连通,位于T型前端设有若干风道出口,风道出口对应竖向出风风管的入口设置并与其连通。促进集装箱内部的空气流通,利用持续输入外部的冷空气来置换内部的热空气,从而实现有效降温。
本发明公开了一种燃料电池汽车热管理系统、方法、存储介质及汽车,其系统包括:第一电子水泵进液口与燃料电池出液口连接,出液口与第一三通阀进液口连接,第一三通阀第一出液口与加热器进液口连接,加热器出液口与第二三通阀进液口连接,第二三通阀第一出液口燃料电池进液口连接,第二出液口与第二电子水泵进液口连接,第二电子水泵出液口与空调暖风换热器进液口连接,空调暖风换热器出液口与燃料电池进液口连接;第一电子水泵、第一三通阀、加热器、第二三通阀、第二电子水泵均与控制器电信号连接。本发明中控制器通过对传感器采集的数据搜集分析后控制各三通阀、电子节温器、加热器、水泵、风扇动作实现冷却液不同的循环回路。
本发明公开了一种动力电池组热管理系统,包括若干翅片管及若干个电池单元,若干个电池单元交错排放于翅片管的两侧,翅片管包括导热管及套于导热管上的若干翅片,若干翅片管由导热管串接形成整体的热管理模块,翅片管两侧的电池单元挤压翅片变形,使变形的翅片填充于相邻电池单元之间的缝隙内。本发明动力电池组热管理系统结构合理紧凑,导热管与翅片,翅片与电池紧贴电池圆柱面,因而导热效率高,散热速度快,能有效降低电池组温度,解决动力电池组的散热问题,延长其使用寿命。
本发明公开了一种热泵空调与电池热管理控制方法,步骤包括:获取电池温度,根据电池温度判断得出第一索引值,并由第一索引值和电池影响因子共同确定出电池的第一响应需求;获取乘员舱温度,根据乘员舱温度判断得出第二索引值,并由第二索引值和乘员舱影响因子共同确定出乘员舱的第二响应需求;通过查询预设的响应需求组合表,选择与第一响应需求和第二响应需求相匹配的热管理模式,并执行工作。本发明囊括了乘员舱热管理与电池热管理,有利于在设备上较少冗余零部件、降低成本;可以满足乘员舱与动力电池对于环境影响因子参变量的不同需求,实现冷量的合理准确分配;另外,该方法简明清晰,通用性强,移植更复杂或简化系统,验证效果良好。
本发明公开了一种电池热管理系统,包括电池箱体和液冷装置,电池箱体上沿横向设置有多个安装腔和通风通道,安装腔和通风通道交替设置,安装腔为由内层和外层形成的中空结构,内层内部空间形成电池安装腔,内层和外层之间的中空腔形成液冷散热腔,液冷装置为多组,每组液冷装置包括冷却液支管、冷却液外部循环管道、冷却液循环动力装置和冷凝器。本发明的一种电池热管理系统,电池箱体结构稳定可靠,冷却液支管设置在液冷散热腔内,既保证了液冷效果,又能防止冷却液支管与电池直接接触产生摩擦导致电池漏液,通风通道与安装腔交替并排设置,使风冷效果明显提高,快速有效的对电池进行散热。
本发明提供了一种电池热管理系统的控制方法、装置及控制器,该控制方法包括:获取电池冷却流道流经的第一目标区域与第二目标区域的电池单体的温度极差、电池整体的第一平均温度、第一目标区域的第二平均温度、第二目标区域的第三平均温度和电池整体的目标温度,其中第一目标区域位于电池冷却流道上靠近冷却液入口的一端,第二目标区域位于电池冷却流道上靠近冷却液出口的一端;根据第一平均温度、第二平均温度、第三平均温度和目标温度,确定冷却液目标温度;根据冷却液目标温度,调节冷却液入口处的冷却液的温度。通过对电池包当前温度一致性进行判断,从而确定出冷却液的目标温度,可以提高电池系统温度一致性。
本发明公开了一种CO2热泵空调整车热管理系统,包括:本发明公开了一种CO2热泵空调整车热管理系统,包括车内制冷回路,其被配置成使得制冷剂循环流经压缩机,室外换热器,带回热功能的液气分离器,膨胀阀,蒸发器和带回热功能的液气分离器。还包括热泵车内制热回路,其被配置成使得制冷剂按压缩机,室内换热器,蒸发器,膨胀阀,带回热功能的液气分离器,室外换热器,带回热功能的液气分离器的顺序流动。本发明所提供的CO2热泵空调整车热管理系统,具有多种工作模式,能够实现联动的电池热管理功能。该系统并且能够解决热泵空调系统低温工况下制热效果差和除霜效果差的问题。
本实用新型提供一种液冷板和用于新能源车辆的热管理系统。液冷板包括进液口和出液口。液冷板限定了多个第一冷却腔室、第二冷却腔室以及第三冷却腔室。各个第一冷却腔室的入口端与进液口连通,第二冷却腔室的入口端与至少两个第一冷却腔室的出口端连通,第三冷却腔室的入口端与第二冷却腔室的出口端连通。多个第一冷却腔室和第二冷却腔室中的各个冷却腔室适于分别对各个电池模组进行冷却,第三冷却腔室适于对功率模块进行冷却。新能源车辆的热管理系统包括前述液冷板。根据本实用新型的液冷板具有较好的均温性,并且能够同时满足电池模组与功率模块的热管理需求。