热传商务网-热传散热产品智能制造信息平台
信息列表
  • 机动车辆热管理系统

    本发明涉及一种用于机动车辆内部的热管理系统,所述系统包括空调装置,该空调装置包括用于热处理的空气的至少一个出口,该空调装置尤其包括HVAC单元,并且该系统还包括控制单元,该控制单元设计为:-获取代表车辆内部中的乘客所穿的衣服量的第一数据(Clo)和 或代表乘客的代谢活动的第二数据(MET);-获取与热舒适状态有关的参数,该参数可具有至少两个极限值,其中一个值与平静状态相关,而另一个值与动态状态相关;-管理空调装置以取决于上述参数的流量供应处理的空气,所述流量在参数与平静状态相关时较低,而在参数与动态状态相关时较高,而在两种情况下的衣服量和 或代谢活动均相同。

    2020-10-09 00:00:00 #法雷奥热系统公司 #D.尼芙
  • 一种用于汽车LED照明灯的热管理装置

    本实用新型涉及一种用于汽车LED照明灯的热管理装置,包括离子风发生装置、电加热装置和集热翅管;所述集热翅管固定在汽车引擎盖内且与所述汽车LED照明灯接触,并且所述集热翅管通过导热管连接汽车发动机以收集并储存发动机运行时产生的热量;所述导热管中部可设有将其断开导通的控制机构。本实用新型的有益效果是:在低温环境下,利用汽车发动机运行时产生的热量来使汽车LED照明灯升温以保证汽车LED照明灯的正常工作。

  • 一种应用于电动汽车动力电池的整车热管理系统

    本实用新型提供一种应用于电动汽车动力电池的整车热管理系统,包括:液冷管路系统和原冷气管路系统,以实现对电动汽车动力电池的加热和冷却。本实用新型的一种应用于电动汽车动力电池的整车热管理系统对整车改动较小,易于实现;空间需求小,适用于空间体积不足的小型车辆;成本低。

  • 一种基于平行流扁管的液体冷却锂电池包热管理装置

    一种基于平行流扁管的液体冷却锂电池包热管理装置,它涉及锂电池技术领域;一个或一个以上平行流扁管呈蛇形均匀的缠绕贴合在方形锂电池的面积最大的侧表面,所述平行流扁管的两端均焊接有连通该平行流扁管的接头,接头均设置在电池模组的外部,平行流扁管的两端接头上分别连接有单个平行流扁管冷媒入口和单个平行流扁管冷媒出口,且单个平行流扁管冷媒出口位于该平行流扁管的最上部。本实用新型有效的将平行流扁管与液冷方式结合,防止温度过高,保证电池的温度均匀,散热效率高;平行流扁管与电池或电池模组表面之间设置有导热垫层,导热垫层具有导热、电绝缘及保证平行流扁管与电池良好接触的功能。

  • 一种电动汽车热管理系统

    本发明提供一种电动汽车热管理系统,包括:控制单元、热泵空调装置、余热循环装置和冷却交换器。所述冷却交换器通过第一回路与所述热泵空调装置进行热交换,所述冷却交换器通过第二回路与动力电池进行热交换,所述冷却交换器用于将所述第一回路运行的制冷剂与所述第二回路运行的循环液进行热交换,对动力电池进行制冷。所述余热循环装置通过第三回路与动力电池进行热交换,使电机逆变器运行时产生的热量用于对动力电池进行制热。所述控制单元用于根据动力电池的温度控制所述第一回路、所述第二回路和 或所述第三回路的通断。本发明能减少能源浪费,提高动力电池的续航里程能力,改善电动汽车能源的综合利用。

  • 一种航天器的真空热试验的温控方法、温控仪和温控系统

    本发明提供了一种用于航天器的真空热试验的温控方法、温控仪和温控系统,通过获取温度采集模块采集的各加热区的温度传感器的温度值,根据温度传感器的温度值拟合绘制各加热区的温度曲线,根据各加热区的温度曲线控制各加热区的加热器的运行状态,根据各加热区的温度曲线和各加热区的加热器的运行状态判断各加热区是否处于异常状态,并在判断结果为是时控制报警器发出报警。本发明可实现在热真空试验条件下对控温对象的测温、控温和异常状态报警,可有效地验证热设计的正确性,为改进热设计提供真实可靠的试验数据支撑。

  • 一种基于金属有机骨架材料的吸附式电池热管理系统

    本发明涉及一种基于金属有机骨架材料的吸附式电池热管理系统,包括内置有电池组的热管理系统外壳,所述电池组由若干个通过金属导体串联起来的蓄电池组成,所述蓄电池的外表面粘贴有MOFs材料层,在热管理系统外壳上还加工有与外界大气接通的进出口流道,该进出口流道处设置有可开闭的旋转封门。与现有技术相比,本发明基于被动热管理方式,不额外消耗电池能量,有效提高蓄电池的续航能力,同时采用开式系统设计,充分利用外部空气相对湿度较高的特性和车辆正常行驶产生的空气流动完成MOFs材料的吸附和解吸过程,不增加水箱、蒸发器及风扇等大型部件,结构更为简单。

  • 一种集相变与液冷耦合传热的动力电池热管理装置

    一种集相变与液冷耦合传热的动力电池热管理装置,包括电池包箱体(1)、可转动式挡风板(3)、散 加热装置箱体(4)、风扇(5)、散热翅片(6)、回流式水管(7)、加热器(8)、水泵(9)和电池单体。电池包箱体内置电池单体和扁平状热管;扁平状热管的冷凝端伸入电池包箱体内;散 加热装置箱体与回流式水管、水泵、加热器串联组成循环通道。本发明采用相变与液冷相结合的方式,扁平状热管通过回流式水管将热量带走,再通过散热翅片和风扇对冷却介质进行循环散热,极大地提高了散热效率。利用加热器及热管的双向导热特性可提高电池包低温时的加热效率。硅胶保护套在电池包箱体受到外力撞击时起防撞减震作用,提高了电池包的安全性。

  • 一种车载空调钛酸钡陶瓷PTC热管理结构模拟方法

    本发明是一种车载空调钛酸钡陶瓷PTC热管理结构模拟方法。本发明属于钛酸钡陶瓷PTC热管理结构模拟技术领域,本发明建立钛酸钡陶瓷PTC热管理结构模型;对钛酸钡陶瓷PTC热管理结构模型添加物理场,将电流场、固体传热场和电磁热场联合起来;基于钛酸钡陶瓷PTC热管理结构模型,根据电流场建立温度插值函数,设置PTC陶瓷电导率参数;采用网格剖分法对PTC热管理结构模型进行剖分,得到网格分布和网格质量报告;对PTC热管理结构模型进行求解,完成车载空调钛酸钡陶瓷PTC热管理结构的模拟。本发明研究影响PTC封装结构散热能力的因素和参数,分析各种因素影响结构散热的机理,提出了提高PTC封装结构散热能力的措施。

  • 动力电池热管理控制方法、动力电池热管理系统及车辆

    本发明提供了一种动力电池热管理控制方法、动力电池热管理系统及车辆。其中,动力电池热管理控制方法包括:检测动力电池温度和冷却介质温度;根据所述动力电池温度所处的温度区间以及所述冷却介质温度的大小确定相应的温度控制模式,并根据确定的所述温度控制模式调节所述动力电池温度至目标温度,其中,不同的温度控制模式的能耗不同。本发明的动力电池热管理控制方法能够实现对动力电池温度控制的最优化,减少能量消耗的同时,将动力电池温度控制在最优工作温度范围内。

  • 一种电动大巴电池热管理系统的管理控制方法及其装置

    本发明提供了一种电动大巴电池热管理系统的管理控制方法及其装置,包括首先采集系统状态参数,根据这些状态判断是否有故障存在;然后,根据正常指令进行工作模式选择,根据采集到的温度值,进入运行模式选择,在主循环和定时中断中,分别设置运行模式下需要运行设备的开关命令和所需参数;接下来,根据系统故障和对应的处理措施修正命令和参数;最后,执行命令。其中,工作模式和运行模式选择流程包括:根据正常传来的单体电池最高最低温度来来选择运行模式,所述运行模式包括制冷模式、自循环模式、待机模式、制热模式。本发明的控制方式使得电动大巴电池热管理系统具有升降温模式、并具备自循环模式、待机模式,使得系统效率更高、调节方便准确等优点。

  • 汽车发动机热管理系统建模及控制方法

    一种汽车发动机热管理系统建模及控制方法,属于控制技术领域。本发明的目的是提供了一种发动机热管理系统的动力学建模方法及水温控制方法。在系统的动力学建模方法中,建立了精确的气缸对内壁的加热功率模型、水套与冷却液的换热系数模型及散热器的散热功率模型。本发明的研究方法包括以下步骤:根据发动机热管理系统的结构、原理及可测量的信号,建立系统的动力学模型;从对流换热及辐射换热机理出发,推导出动力学模型中三个中间变量;根据系统的动力学模型推导出系统的逆动力学模型;根据系统的动力学模型设计史密斯预估器;设计PD反馈控制器。本发明精确的建立了发动机热管理系统的动力学模型,使控制精度得以提高。