热传商务网-热传散热产品智能制造信息平台
信息列表
  • 一种基于高热导率相变材料的电池热管理系统及管理方法

    本发明提供一种基于高热导率相变材料的电池热管理系统及管理方法,系统包括:电子膨胀阀(1)、蒸发器(2)、压缩机(3)、带流道箱体(4)、冷媒流道(5)、相变材料(6),动力电池周围先填充一种由碳纳米管分散液与MXene分散液冻干形成的气凝胶作为传热介质,再将石蜡融化后灌入气凝胶中,同时具有石蜡高相变潜热和气凝胶高热导率。电池产生的热量通过高导热率材料快速传给相变材料,当温度达到熔点时,发生固液相变,在保持相变温度的同时,吸收了大量热量。相变材料外侧布置带有流道的冷板,将相变材料吸收的热量及时带走。冷板内流道直接连接车用空调系统,冷却介质为空调的冷媒,通过控制电子膨胀阀开度控制制冷量。

  • 一种户外电池热管理的系统及方法

    本发明公开了一种户外电池热管理的系统,包括控制器、半导体制冷器、半导体制热器、箱体和相变材料。本发明结构简单,成本低,基于锂离子电池发热量不均匀、温度差异较大的现象,采用分区域热管理的方法,将相变材料和液体冷却相结合,主被动结合,同时具备散热、加热和保温功能,实现了对方型锂离子电池组内温度的精确控制,在低温条件下对电池有效加热,使电池组工作在适宜的温度下,保证电池组正常工作;能够有效提高电池安全性、延长电池使用寿命;保证电池热管理系统长期高效的运行,同时提高了热管理系统的经济性。

  • 电动车辆热管理系统

    本申请提出了一种电动车辆热管理系统,电动车辆热管理系统包括电机冷却系统、第一可控开关、乘员舱水暖系统、第二可控开关、第三可控开关以及热泵空调系统,通过设置可控开关实现动力电池温控系统与电机冷却系统在串联模式与独立模式间切换、动力电池温控系统与乘员舱水暖系统在串联模式与独立模式间切换以及电机冷却系统与乘员舱水暖系统在串联模式与独立模式间切换,通过设置换热装置实现热泵空调系统与动力电池温控系统进行热交换、热泵空调系统与电机冷却系统进行热交换、热泵空调系统与乘员舱水暖系统进行热交换以及热泵空调系统与乘员舱内空气进行热交换,实现热量在四个系统间灵活地转移,从而降低电动车辆能耗,提升电动车辆续驶里程。

  • 一种电池热管理方法

    本发明提供一种电池热管理方法,包括:步骤1:设定电池的目标工作温度范围为T1~T2,获取电池温度从T1上升到T2所需要的时间t1,并将t1作为电池的非制冷工作时间长度;步骤2:获取电池的当前温度T,当T>T1,则获取电池的剩余工作时间总长t,根据t和t1获得电池的制冷工作时间长度t2,t2=t-t1;步骤3:获取电池的当前温度T下降至温度T1过程中电池散发的热量Q1,获取电池在持续t2的工作后产生的热量Q2,根据所述Q1、Q2以及t2获得制冷功率P;步骤4:根据所述制冷功率P和制冷工作时间长度t2对电池进行制冷。使用本方法能够有效将电池的工作温度维持在设定目标温度范围内,降低热管理能耗成本。

  • 具有优化的热管理的超声探头

    超声探头(1)包括壳体(6)、可操作地将声能发送向探头适于声学耦合至目标物体或区域的区(801)的换能器组件(301)、包括布置为将由换能器组件产生的热传递至位于此换能器组件外的一个或多个区或区域(103,7)的热传递装置(2,5)的冷却系统。所述热传递装置包含石墨烯。

  • 一种针对姿控发动机大羽流影响的气瓶热防护结构及气瓶

    本发明涉及一种针对姿控发动机大羽流影响的气瓶热防护结构及气瓶,该热防护结构包括柔性防热层和多层隔热组件,其中多层隔热组件包覆在气瓶的圆柱段表面,柔性防热层包覆在气瓶两端的半球体表面,以及气瓶的圆柱段中多层隔热组件的表面;所述多层隔热组件包括n个反射层、n-1个隔离层和1个外包覆层,其中n个反射层与n-1个隔离层交替排布,最内层与最外层均为反射层,且最内层的反射层与气瓶圆柱段外表面接触,最外层的反射层与外包覆层接触,外包覆层与所述柔性防热层接触,n为正整数,且满足如下关系式:n=kρnλmli hmli;本发明热防护结构既保证气瓶满足控温要求,又保证了防热材料设计质量,有效减轻重量,节约产品成本。

  • 一种乘用车热管理控制阀监测及控制系统

    本实用新型属于汽车热管理控制技术领域,具体涉及一种乘用车热管理控制阀监测及控制系统,热管理控制阀包括电子执行器和三通阀,控制器分别与顺序、周期限定模块一和顺序、周期限定模块二连接,所述的顺序、周期限定模块一分别与三通阀角度采集模块、发动机冷却液温度采集模块、三通阀目标角度控制模块、三通阀电机控制模块连接并限定其动作顺序和周期;所述的顺序、周期限定模块二分别与发动机信息采集模块、目标水温控制模块连接并限定其动作顺序和周期,该系统通过监测到的数据分析计算出三通阀内球阀应该转多少角度,从而合理的分配冷却液的流量达到控制汽车水温的目的,让汽车在一个更加经济的车况下运行,实现发动机最省油的目的。

  • 电动汽车热管理水泵的模拟方法、装置及设备

    本发明涉及测试仿真领域,其实施方式提供了一种电动汽车热管理水泵的模拟方法,所述方法包括:获取输入所述水泵的信号,并确定输入信号正常;根据用户选择的水泵工作状态,生成对应的PWM波形;输出所述PWM波形,作为所述水泵的工作状态反馈。同时还提供了对应的电动汽车热管理水泵的模拟装置,以及对应的设备。本发明提供的实施方式避免了采用实体热管理水泵进行测试带来的能耗高和安全隐患的问题,且方便用户选择需要的工作模式。

  • 用于混合动力车辆或电动车辆的热管理的回路

    本发明涉及一种用于混合动力或电动车辆的热管理的回路(1),所述热管理回路(1)包括第一可逆空调环路(A),制冷剂流通通过该第一可逆空调环路,且该第一可逆空调环路包括共同设置在第二环路(B)上的双流体热交换器(19),热传递流体在该第二环路中流通;第二、热传递流体流通环路(B),包括:第一流通分支(B1),其沿热传递流体流通的方向包括第一泵(49)、布置在内部空气流(100)中的第一散热器(45)、和电池热交换器(47);第二流通分支(B2),其与第二散热器(45)并联连接,并包括第二泵(41)和用于电加热热传递流体的装置(43);第三流通分支(B3),其与第一泵(49)和电池热交换器(47)并联连接,所述第三流通分支(B3)包括所述双流体热交换器(19)。

  • 用于流体热管理的储热能力装置的组合物和方法

    本发明涉及用于储热能力装置的装置和方法,所述储热能力装置具有至少一个主体和至少一个同轴装置,所述主体具有由一个或多个聚合物层制成的封装件,所述封装件界定了用PCM填充的中空体积,所述同轴装置围绕所述至少一个PCM填充的主体的整个长度;及其用途。

  • 一种电动车热管理系统及方法

    本发明属于电动车领域,公开了一种电动车热管理系统及方法,热管理系统包括控制器、第一溢水壶以及水循环管;水循环管内填充循环水,水循环管包括水循环主管、第一支管、第二支管、第三支管以及第四支管;水循环主管的两端均与第一溢水壶连通,水循环主管上设置第一水泵、驱动电机水套和第一温度传感器;第一支管的两端均与水循环主管连通,第二支管、第三支管以及第四支管的一端均与水循环主管连通,另一端均通过三通阀与第一支管连通;第二支管上设置第一散热器,第三支管上设置PTC加热器和第二水泵,第四支管上设置暖风芯体。能够最大限度的采用驱动电机的余热通过暖风芯体采暖,有效降低PTC加热器的使用频率,达到降低整车能耗的目的。

  • 可在低温环境快速启动的燃料电池热管理系统

    可在低温环境快速启动的燃料电池热管理系统,属于新能源技术领域。本实用新型包括氢燃料电池堆、冷却液箱、散热器、换热器和燃烧器,所述氢燃料电池堆一端连通空气输入管道和氢气输入管道,所述氢燃料电池堆另一端连通空气输出管道和氢气输出管道,空气输出管道和氢气输出管道分别通过支路管道与燃烧器连通,燃烧器的出口与换热器的换热器高温入口连通,换热器的换热器高温出口通向外界,冷却液箱与散热器建立连通,散热器入口与换热器的换热器低温入口相连,换热器的换热器低温出口与氢燃料电池堆相连,氢燃料电池堆另一端与冷却液箱入口相连。本发明的目的是为了提高燃料电池低温环境下启动速度。本实用新型结构简单、造价低,适于推广使用。