本申请提供一种热管理系统、热管理方法和电动汽车。该热管理系统包括空调制冷剂回路和载冷剂回路,空调制冷剂回路包括压缩机、增焓装置、第一换热器和中间换热器,载冷剂回路包括调节支路、电池支路、电机支路和车外支路,车外支路包括并联的第一管路和第二管路,第一管路上设置有车外换热器,载冷剂换热管路的第一端能够选择地与第一管路或第二管路连通,载冷剂换热管路的第二端能够选择地与调节支路或电机支路连通,调节支路、电池支路、电机支路和车外支路通过第一四通阀相连,所述增焓装置通过补气管路连接至所述压缩机的补气口。根据本申请的热管理系统,能够合理分配整车热能,提高整车能源利用率,提升续航里程。
本发明提供一种热管理系统及其控制方法、电动汽车,热管理系统包括车厢制冷剂循环子系统、电池载冷剂循环子系统、电机载冷剂循环子系统,电池载冷剂循环子系统通过第二换热器与车厢制冷剂循环子系统形成热交换,电机载冷剂循环子系统通过第三换热器与车厢制冷剂循环子系统形成热交换,电池载冷剂循环子系统与电机载冷剂循环子系统的管路通过第一四通阀形成可贯通连接,三通阀通过第二制冷剂管路能够将车外换热器旁通。根据本发明的一种热管理系统及其控制方法、电动汽车,能够充分利用电机及电池余热补偿低温工况下车厢制热能力的不足,另一方面还能够提升电池控温的精度及速度,提高电池能效降低电池温差。
本发明提供一种热管理系统、电动汽车,热管理系统包括车厢制冷剂循环子系统、电池载冷剂循环子系统、电机载冷剂循环子系统,车厢制冷剂循环子系统包括管路并联的第一换热器、第二换热器以及与第一换热器及第二换热器形成管路串联的第三换热器,电池载冷剂循环子系统通过第二换热器与车厢制冷剂循环子系统形成热交换,电机载冷剂循环子系统通过第三换热器与车厢制冷剂循环子系统形成热交换。根据本发明的一种热管理系统、电动汽车,一方面能够充分利用电机及电池余热补偿低温工况下车厢制热能力的不足,另一方面还能够提升电池控温的精度及速度,提高电池能效降低电池温差。
本发明涉及一种用于车辆的除湿装置、热管理系统及其除湿方法,所述除湿装置包括:壳体,包括新风进风通道、回风进风通道和混风通道,所述新风进风通道的入口与外界环境连通,所述回风进风通道的入口与乘员舱的出风口连通,所述新风进风通道的出口和所述回风进风通道的出口分别与所述混风通道的入口连接,所述混风通道的出口与所述乘员舱的入风口连通;除湿丝网,安装于所述混风通道中,用于对进入所述混风通道的空气进行除湿;风机,安装于所述混风通道中,用于将进入所述混风通道的空气输送至所述乘员舱。实施本发明,可在避免车辆起雾的同时降低冬季采暖时的能耗。
本发明公开了一种应用于电动汽车动力总成的新型热管理装置,包括分流管道、中继管道、封堵机构和电磁铁;分流管道内设有外流道和内流道,外流道包围于内流道外,外流道与内流道密封分隔;中继管道与分流管道连接导通,中继管道内设有可被磁吸的封堵机构,中继管道相对的两端均设有电磁铁,电磁铁的开启用于控制封堵机构在中继管道内移动,封堵机构往一方向的移动用于单独封堵中继管道与外流道的导通,封堵机构往另一方向的移动用于单独封堵中继管道与内流道的导通;即水流在外流道内流动时,将能提高水流的散热效果,水流在内流道内流动时,将能提高水流的保温效果,切实解决了现有技术无法解决管道内部工况实时调控的问题。
本发明公开了一种电动工业车辆的热管理系统及其控制方法,其包括分别对动力系统、动力电池系统进行热管理的第一回路和第二回路,其中,第一换热水箱和所述第二换热水箱之间通过一耦接装置相连,所述第一回路和所述第二回路中均连接有温度传感器;所述热管理系统还包括控制装置,所述控制装置分别与所述第一回路、所述第二回路和所述耦接装置电性连接。该热管理系统可同时对动力系统和动力电池系统进行有效的温度控制,且可利用动力系统的余热对动力电池系统进行保温,降低热管理系统能耗,提高热管理系统效率的同时降低成本并提高可靠性。
本发明提供了利用固化剂的温度激活释放的热管理和 或EMI缓解材料。在示例性实施方式中,单件的可固化可分配的热管理和 或EMI缓解材料包括位于包覆剂内的固化剂,其被构造成使得:在低于预定温度的温度,固化剂保持隔绝在包覆剂内并与基质隔离;并且在高于预定温度的温度,固化剂能够从包覆剂内释放以引发基质的固化。
一种热管理模块及其组装方法,该热管理模块包括固定连接的外壳和管道,所述外壳内设有第一环形密封件和可旋转的阀体,所述第一环形密封件抵靠在所述阀体上以进行第一密封;所述第一环形密封件的轴向一端伸入所述管道内,并与所述管道的内周面相抵以进行第二密封。本技术方案降低了外壳的制造成本,缩短了热管理模块的组装时间。
本发明公开了一种温度传感器组,包含2个或2个以上温度传感器,温度传感器组内各个温度传感器之间具有相同或接近的温度测试误差值。在不提高温度传感器本身测试精度的条件下,可以准确地测试各个温度监测点之间的温度差,解决了现有的温度传感器只能作为一个独立的数据源来进行分析管理的技术问题,取得对温度差实施有效地测量及后续的分析及至管理的技术效果。本发明还公开了一种测温装置,一种温度传感器的配对方法,一种温度监测系统和热管理系统。本发明公开的测温装置,温度传感器的配对方法,可实现温度传感器的精准配对;使用精准配对的温度传感器的温度监测系统及热管理系统能够获得更精确的温度差数据。
本发明公开了一种高焓值阻燃相变材料及其制备方法,高焓值阻燃相变材料包括以下质量份数的原料:基材25-55份、经表面处理的相变微胶囊45-70份以及阻燃剂10-55份;所述基材包括三元乙丙橡胶、含磷环氧树脂及加成型硅胶中一种或多种;所述高焓值阻燃相变材料的焓值高于100J g。本发明的阻燃相变材料实现了阻燃性和高焓值的统一,既提高了相变材料的安全性,又提高了相变材料的储热控温能力,特别适用于大功率充电、高热通量芯片、高密度电池组等应用场景的热管理,保证器件无局部过热区域,提高产品的稳定可靠性。
本申请公开了一种阀组装置、控制方法、车辆冷却系统及车辆,涉及车辆领域,用于降低车辆中通过热泵进行制冷或制热的成本。阀组装置包括:控制器、执行机构、第一出入口集合和第二出入口集合;第一出入口集合包括第一冷却液出入口、第二冷却液出入口,第二出入口集合包括以下出入口中的一个或多个:动力总成出入口、乘员舱制热出入口、前端出入口;其中,出入口的入口用于流入冷却液,出入口的出口用于流出冷却液;控制器用于根据车辆冷却系统的工况,控制执行机构将第一出入口集合中的至少一个入口与第二出入口集合中的至少一个出口连通,将第一出入口集合中的至少一个出口与第二出入口集合中的至少一个入口连通。
本发明提供了一种电池包控制方法、系统及车辆,应用于具有车载通信终端的车辆,其中,所述车辆包括加热模块及冷却模块,所述方法在车辆处于下电状态时,在达到预设定时任务的触发条件时,通过车载通信终端将车辆唤醒,进而对电池包进行温度控制,以使得电池包的温度维持在预设范围内,以便于车辆的再次启动及使用;从而解决了现有技术中,在车辆处于下电状态后,无法利用热管理系统对电池包进行温度控制,容易因环境温度较低或较高,导致电池包温度过低或过高的问题。