本发明涉及一种发动机智能热管理系统及控制方法,包括发动机冷却液温度传感器、中冷进气温度传感器、变矩器油温度传感器;所述发动机冷却液温度传感器包括设置在发动机本体上或冷却管路上的第一温度传感器及设置在发动机的散热器上第二温度传感器;所述中冷进气温度传感器包括设置在中冷器本体上的三传感器及设置在发动机的进气管路上的第四传感器,还包括环境温度传感器和大气压力传感器。本发明发动机智能热管理系统,包含一年四季一一对应的控制程序,根据环境温度和冷却系统的实际温度,控制冷却风扇转速,系统通过自动监测环境温度的变化,智能匹配最佳控制,在保证发动机散热需求的前提下,大大降低了燃油消耗。
一种车辆用空调装置,其具有:泵(11),通过吸入并排出热介质而使热介质循环;空气冷却用热交换器(16),是通过泵(11)循环的热介质与朝向车室内吹送的送风空气进行显热交换而对送风空气进行冷却除湿;热介质外气热交换器(13),使热介质与外气进行显热交换;压缩机(32),吸入并排出制冷循环(31)的制冷剂;热介质冷却用热交换器(14),使制冷循环(31)的低压侧制冷剂与热介质进行热交换而冷却热介质;以及第一切换阀(21)和第二切换阀(22),在第一除湿模式和第二除湿模式之间进行切换,该第一除湿模式为热介质在冷却器芯(16)与热介质冷却用热交换器(14)之间循环的模式,该第二除湿模式为热介质在冷却器芯(16)与热介质外气热交换器(13)之间循环的模式。因此,降低为了抑制车窗玻璃的起雾所需要的动力。
本发明涉及一种同时具有电池单体均衡与热管理功能的智能电池组,其特征在于,所述智能电池组包括至少两个智能电池箱、一个能量池和一个主控制器,所述智能电池箱模块设置在能量池和主控制器之间。本发明专利能够实现电池组的无损均衡与热管理功能,显著提高了均衡速度并有效降低了成本,电池箱具有模块化特点,可以通过电池箱串、并联组成任意电压与容量等级的电池组。
本实用新型提供一种热管理装置及电源装置,涉及电池热管理技术领域,具体包括有液冷板以及至少一个导热鳍片,液冷板的内部设有一储液槽,外壁设有一进液口及一出液口,进液口、出液口与储液槽连通,液冷板设置于电池模组的一侧,每个导热鳍片的一端与液冷板连接,另一端伸入电池模组内并置于相邻单体电池间的空隙处。这种热管理装置与传统的加散热装置相比,大大减小了液冷板与电池模组之间的热阻,热传导率明显提升。
一种用于冷却混合动力或电动汽车中电池的换热器,包括多个间隔开的分立的换热器面板,每个换热器面板具有冷却剂入口歧管部分、冷却剂出口歧管部分以及在入口歧管部分与出口歧管部分之间延伸的多个冷却剂流动通路。各分立的面板的入口和出口歧管部分通过管道连接以限定连续的冷却剂入口和出口歧管,它们分别具有冷却剂开口。通过分立的面板的冷却剂的流动可以通过为面板的流体流动通路设置不同的横截面面积和 或液压直径来平衡,这部分取决于每个面板相对于冷却剂开口的靠近度。在各面板由冲压板对形成的实施例中,可通过在组装过程中有意偏离各板来实现冷却剂流动通路变化的横截面面积和 或液压直径。
空调装置具备:热介质空气热交换器(16、17),其使由热介质温度调节器(14、15)进行了温度调节后的热介质与向空调对象空间吹送的送风空气进行显热交换;热传递部(13、18、19、20),其具有供热介质流通流路,并在与由热介质温度调节器(14、15)进行了温度调节后的热介质之间进行热传递;大内径配管(43A、46A、47A、48A),其形成热介质温度调节器(14、15)与热传递部(13、18、19、20)之间的热介质流路(43、46、47、48);以及小内径配管(44A、45A),该小内径配管形成热介质温度调节器(14、15)与热介质空气热交换器(16、17)之间的热介质流路(44、45),并且该小内径配管具有比大内径配管(43A、46A、47A、48A)小的内径φH、φC。
本发明公开一种无人机,其包括机身。所述机身设有容置腔、进风口以及出风口,所述进风口及所述出风口与容置腔连通。其中,所述进风口用于吸入所述无人机的螺旋桨产生的气流,并且所述气流能够经由所述容置腔后从所述出风口流出。本发明还提供一种热管理系统及热管理方法,及应用该热管理系统的无人机。上述无人机的散热效率较高。
本发明涉及制冷系统用实验室装置,具体涉及一种复合测量车载空调及电池热管理性能的焓差试验装置,包括室内模拟环境室和室外模拟环境室,所述的室内模拟环境室为两个并分为室内模拟环境室一和室内模拟环境室二,所述的室外模拟环境室为一个。本发明焓差试验装置,通过采用两个室内模拟环境室和一个室外模拟环境室结构,通过空气焓差法来测定“一拖一”或“一拖二”车载空调器,达到了一个实验室具有多种用途的效果,除此之外,在室内模拟环境室二内还设有电池热管理系统测试模块,通过恒温水箱和换热器之间搭建的循环回路与实现对电池组降温的水冷机组的连接,可以测量出水冷机组的性能参数,为空调系统的匹配及与电池组的匹配提供了有效依据。
本发明属于车辆空调系统,特别涉及一种兼有电池热管理功能的汽车空调系统,包括由压缩机、冷凝器、第一电磁阀、第一膨胀阀和第一蒸发器形成的第一循环回路;和由第二电磁阀、第二膨胀阀、第二蒸发器和单向阀形成的第二循环回路;所述的第一循环回路为汽车室内降温,所述的第二循环回路为实现电池热管理功能。本发明将现有的车辆空调系统与电池热管理系统巧妙的结合成一个整体控制系统,这样,可根据环境温度的不同,切换不同的循环回路,以满足对车厢内及电池箱内温度的调节,实现了一种高度集成,整个系统设计较为紧凑,适合推广使用。
本发明公开了一种用于车辆的动力电池组热管理装置及热管理方法,涉及车辆领域。所述用于车辆的动力电池组热管理装置包括加热循环水路,配置成利用发动机尾气余热给所述动力电池组加热;散热循环水路,配置成高温时给所述动力电池组降温;温度传感器,安装在所述动力电池组处并用于监测其实时温度;和控制器,根据所述动力电池组的实时温度与设定的最小温度阈值和最大温度阈值进行比较,根据比较结果,选择启动所述加热循环水路或启动所述散热循环水路给所述动力电池组加热或者降温,直到所述动力电池组温度满足理想的工作温度。本发明还提供了相应的方法。通过本发明,可有效平衡动力电池组的温度,改善其性能的同时增加了其使用寿命。
本发明涉及一种动力电池的热管理系统。包括电池箱体,所述的电池箱体内设有多个电池模块,所述的多个电池模块之间以及电池模块与电池箱体的内壁之间设有气囊,所述的气囊内部设有温度传感器,所述的气囊上连有进气管与排气管,所述的进气管与排气管上分别设有第一控制阀与第二控制阀,所述的进气管与空调压缩机相连,所述的温度传感器与控制器的输入端相连,所述的空调压缩机、第一控制阀及第二控制阀与控制器的输出端相连。由上述技术方案可知,本发明通过对密闭气囊充入冷气或热气,以实现对电池模块的冷却或加热,能够避免冷气或热气直接与电池模块接触使水蒸气冷凝造成电池短路,提高了电池的使用安全性,且电池重量小。
本发明公开了一种基于耦合式热管理的电池储能系统及方法,包括太阳能供电模块和电池储能系统,太阳能供电模块通过供电装置为电池储能系统内热管理模块的液冷循环水泵提供动力,电池储能系统由两个以上电池组模块构成,电池组模块之间用圆柱状金属粗管道相连;每个电池组模块包括电池组以及热管理模块,电池组内至少包含三个单体电池,热管理模块包含液冷通道以及相变材料。本发明将空冷、液冷以及相变材料耦合的热管理系统与不间断电池储能系统相配合,热管理系统的控温能力与不间断电池储能系统的储能能力优势互补,即能够解决不间断电池储能系统储放电过程中的产热现象,又能够实现不间断电池储能系统的储能和供能能力。