公开了一种牵引电池支撑组件。提供了一种包括堆叠的棱柱形罐壳体的阵列和支撑结构的车辆牵引电池组件。每个罐壳体可限定用于容纳电池单元的空腔和多叉梳形基座。支撑结构支撑所述壳体。支撑结构和所述基座限定在二者之间被构造用于冷却剂从中流过的通道。每个罐壳体的通向所述通道的下部可以是介电材料。介电层可跨越罐壳体的长度并且可位于所述通道上方。每个罐壳体可限定第一定位特征,该第一定位特征具有与相邻的罐壳体的第二定位特征结合的尺寸以使罐壳体对齐。
本实用新型涉及一种纯电动客车动力电池舱热管理系统,包括控制器、若干个电池舱体,其特征在于,每个电池舱体均包括调温换气装置、舱温传感器、电池模组和电池模组温度采集装置,所述控制器连接所述舱温传感器和所述调温换气装置,BMS电池管理单元连接所述电池模组和所述电池模组温度采集装置,所述控制器连接车辆显示装置和BMS电池管理单元,以电池模组是否工作在最佳温度25℃为执行不同模式判断维度,通过降低高温舱体温度和升高低温舱体对舱体的温度进行调节。
本公开涉及一种基于热管的电动汽车锂电池热管理系统,所述系统包括锂电池组、热管、液体槽、加热器、散热器、泵、风扇、管道、传感器及控制单元。本公开通过热管与其他辅助设备间的耦合匹配,对各种行驶工况下的电动汽车车用锂电池组进行加热或冷却,从而控制电池表面及电池箱体温度,并有效的缩小电池表面温度梯度,使车载锂电池组工作在一个合适的温度范围之内。
本发明涉及一种热压转换刚性扁管及电池热管理装置,该热压转换刚性扁管用于发热元件的热管理,所述热压转换刚性扁管具有加热端及冷却端,且内部具有封闭循环回路,所述加热端和所述冷却端之间由连接通道连通,所述封闭循环回路内充装有导热工质,所述加热端的液态导热工质受到发热元件的加热而产生热压转换传热效应,通过所述连接通道流至冷却端,将发热元件工作时产生的热量迅速传输至与冷却端的壁面接触的冷凝器并散掉,然后再流回加热端,如此循环,使热压转换传热效应持续维持,实现对发热元件的热管理。本发明的热压转换刚性扁管比普通的热管传热更快,响应更迅速。
本发明涉及具有膜孔的CMC制品的热管理。具体地,发动机构件提供为用于生成热燃烧气体流的燃气涡轮发动机(10)。发动机构件可包括基底(82),该基底由CMC材料构成并且具有面向热燃烧气体流的热表面(84)和面向冷却流体流的冷却表面(86)。基底(82)通常限定膜孔(90),该膜孔延伸穿过基底(82)并且具有提供在冷却表面(86)上的入口(92)、提供在热表面(84)上的出口(94),以及连接入口(92)和出口(94)的通道(96)。发动机构件还可包括在热表面(84)的至少一部分上以及在限定于通道(96)内的内表面的至少一部分上的涂层。
本发明属于电动汽车领域,具体涉及一种电动汽车电池包温度的智能控制系统和方法。本发明旨在解决如何延长电动汽车电池包寿命的问题。为此目的,本发明提供了的方法包括:在车辆关闭时判断热管理操作是否超时;如果热管理操作未超,则判断电池是否连接充电桩;如果电池连接充电桩,则对电池温度进行评估;如果电池未连接充电桩,则对电池SOC进行评估;将电池温度的评估结果与目标温度或预设的温度范围进行比较,根据比较结果进行如下操作:热管理系统停止热管理操作、热管理系统使冷却液流向冷却装置或者使冷却液流向散热器。本发明能够在不增加成本的前提下针对电池的实时状态选择性地对其进行冷却,从而延长电池包寿命。
一种用于管理飞机或燃气涡轮发动机中的至少一者的热量转移的系统包括利用油以用于热量转移的第一发动机系统(202)。第一系统的油具有至少大约500℉的温度极限。该系统还包括燃料系统(206),该燃料系统(206)具有用于使燃料系统(206)中的燃料脱氧的脱氧单元(212)、以及位于脱氧单元(212)下游的燃料 油热交换器。燃料 油热交换器与第一发动机系统(202)中的油和燃料系统(206)中的燃料热连通,以用于将热量从第一发动机系统(202)中的油转移至燃料系统(206)中的燃料。
一种燃气涡轮发动机冷却系统(400,500,600)包括燃气涡轮发动机(100)。燃气涡轮发动机包括核心发动机(102)、冷却散热器(602,202,316,302,702)、核心罩下空间(131)和核心罩(130),核心罩(130)至少部分地包围核心发动机且限定核心罩下空间的径向外壁。燃气涡轮发动机冷却系统包括定位在核心罩下空间中的罩下构件(402)。燃气涡轮发动机冷却系统还包括包含第一端(416)、第二端(418)和在它们之间延伸的管道(420)的热管(414)。第一端热联接至罩下构件,且第二端热联接至冷却散热器。热管有助于将一定量的热量从罩下构件传递至冷却散热器。
本发明提供了一种热管理可用功率的计算方法、热管理控制器、热管理系统,所述热管理系统包括所述热管理控制器,所述热管理控制器使用所述计算方法来计算极限工况下的热管理可用功率,该计算方法在计算热管理可用功率的同时,综合考虑了驱动可用功率的计算,而且,热管理可用功率采用一阶低通滤波算法,滤波参数的大小取决于驱动需求功率变化率的大小;驱动可用功率限制系数采用PI算法,P参数和I参数随着驱动可用功率与驱动实际功率差值的变化而变化。应用本发明提供的计算方法,极限工况下,能够在满足整车安全需求的基础上,最大程度地保证驾驶性,并且避免动力电池过放。
本实用新型公开了一种热管理回收系统及空调机组和机动车辆,该系统包括:蒸发器,该蒸发器用于对该系统输入能量;热吸收及转换元件,该热吸收及转换元件用于将该系统内的温度或压力转化为机械能或电能输出;增压器,该增压器位于所述热吸收及转换元件的前端,用于将低温低压蒸汽压缩成高温高压蒸汽;余热换热器;该余热换热器设于热吸收及转换元件后端,通过工质的相变蒸发吸热,使工质在余热换热器冷凝端出口温度达到系统设定值;节流膨胀阀一,所述节流膨胀阀位于蒸发器的前端;汽液分离及干燥储液罐,该汽液分离及干燥储液罐用于将冷凝后的工质干燥、分离,并储存工质液使其重新输入系统循环。
本发明公开了一种基于一拖多空调系统的混合动力新型电池热管理系统,其包括膨胀阀、压缩机、冷凝器、驾驶室管理模块、电池箱热管理模块,膨胀阀与压缩机相连,压缩机与冷凝器相连,膨胀阀、冷凝器都与驾驶室管理模块相连,驾驶室管理模块与电池箱热管理模块相连。本发明能够减少消耗,控温效果好,结构简单,节约能源,使用方便。
本实用新型公开一种动力电池热管理系统,包括电池包、充电机及负载;还包括:温度检测单元,实时检测电池包中各单体电池的当前温度;温度处理单元,对各单体电池的当前温度进行有效性判断,并剔除无效的温度值;温升速率计算单元,根据剔除无效的温度值后的各单体电池的当前温度计算各单体电池的当前温升速率;散热模块,根据散热控制单元的控制指令进行相应的操作;散热控制单元,根据剔除无效的温度值后的各单体电池的当前温度、各单体电池的当前温升速率控制散热模块的工作状态。本实用新型可以在电池包放电模式下,还可以根据单体电池的温升速率控制散热模块的开启或关闭,使得电池包保持在一个相对稳定的温度范围内,提高电池包的安全性。