本公开包括具有壳体(31)的蓄电池模块(20),所述壳体具有第一和第二端部(40,38)和所述第一和第二端部之间的第一和第二侧面(34,36)。所述蓄电池模块包括棱柱形电化学电池(30)和具有第一和第二部段(100,102)的冷却管道。所述第一部段(100)沿着所述壳体的第一侧面(34)延伸,包括至环境的第一开口(106)。所述第二部段(102)沿着所述壳体的第二侧面(36)延伸,包括至环境的第二开口(108)。所述第一和第二开口(106,108)接近所述壳体的第二端部(38)。所述蓄电池模块包括设置在所述壳体的第一端部(40)的风扇(68)。所述风扇与所述冷却管道流体联接,并且沿着所述第一和第二部段(100,102)提供通过所述第一和第二开口(106,108)的气流。
本发明涉及一种用于调节构件的温度的陶瓷的冷却和加热体(1),其中冷却和加热体(1)包括带有前侧(2)、相对而置的后侧以及将前侧(2)与后侧连接的侧面(3)的板形的支承体并且在前侧(2)和 或后侧上布置有与支承体连接的金属施敷物并且支承体具有冷却元件。为了能够调节任意的电气的或电子的构件的温度,根据本发明提出了,在前侧(2)和 或后侧上施加有加热结构(4)。
一种电发热部件的热管理结构和装置,提高了电发热部件与换热介质(如冷却介质)之间的换热效率,达到了减小单节电发热部件的上下温差,及电发热部件之间温差的目的。
提供一种用于包括多个照明元件的室外照明系统的模块化热管理设备,其包括壳体,该壳体包括设置在壳体的顶部表面处的对接部分、待设置和安装到对接部分上并且构造成使由室外照明系统生成的热消散的可附接热沉,以及构造成将可附接热沉附接于对接部分并且向其施加接触压力的固定元件。
本发明公开了一种电动汽车充电宝,包括储能系统、充放电控制系统、健康诊断系统、热管理系统以及人机交互系统;所述储能系统与充放电控制系统电连接,所述健康诊断系统同时与储能系统以及电动汽车通讯连接,对储能系统中的锂离子电池组以及电动汽车的电动汽车电池组进行健康状态的诊断,并通过所述人机交互系统显示诊断过程和结果,所述人机交互系统还通过充放电控制系统对储能系统进行充、放电控制,热管理系统分别与储能系统和充放电控制系统连接,对储能系统和充放电控制系统进行热管理。本发明具有集成化、小型化的特点,且具有健康状态监测功能,满足电动汽车对充电和续航里程的需求。
本实用新型公开了一种基于半导体热电效应的电池组热管理装置,其包括电池组,其包括温度采集模块、温度控制模块以及温度调节模块;所述温度调节模块包括第一风扇、第一散热片以及半导体制冷片,所述温度控制模块包括主控制器、车载电源以及报警装置。本实用新型利用半导体的热电效应制冷和制热,并通过电风扇把热空气或冷空气吹向电池组,对其进行升温或降温,同时通过温度采集模块采集电池组温度给主控制器,通过主控制器对电风扇和半导体制冷片进行控制,实现温度反馈调节。本实用新型结构简单、升温降温效果好、安全稳定。本实用新型作为一种基于半导体热电效应的电池组热管理装置,广泛适用于电池热管理技术领域。
本申请提供了一种热管理系统检测设备,包括通过管路连接的实验模拟箱和热管理环境工作箱,以及与所述热管理环境工作箱电连接的设备控制箱。本申请提供的上述热管理系统检测设备,能够实时通过温度、压力、流量的传感器,方便的监测在不同温度环境下电池的热管理情况,对寻找最佳的电池热管理的策略、管控其温度失控,进而对其安全性和运行的性能具有重要的实际意义。
本发明公开的一种工程机械智能散热管理系统及方法,系统包括控制器以及分别与控制器连接的液压油温度传感器、变矩油温度传感器、动力机冷却水温度传感器、动力机中冷温度传感器、液压油散热风扇组、变矩油散热风散组和动力机散热风扇组,所有散热风扇组的散热风扇均为电驱动风扇;所述控制器内存储了用于管控各散热风扇组运行的控制策略,所述的控制策略是依据液压油温度传感器、变矩油温度传感器、动力机冷却水温度传感器和动力机中冷温度传感器采集到的各类介质温度数据对各风扇组进行开 关控制和转速控制。本发明可有效提升散热效果,节能减噪,降低成本投入以及提高工程机械智能化水平。
本发明涉及一种新能源纯电动客车电池电机联合热管理系统及热管理方法。该热管理系统包括散热模块、产热模块和控制模块。散热模块包括散热器和与散热器相连的散热风扇。产热模块包括电机和与电机相连的电机控制器。控制模块包括整车控制器和通过信号线与整车控制器相连的动力锂电池管理系统。还包括循环模块,循环模块包括第一及第二循环水泵、循环管路、第一三通阀门、第二三通阀门、第一电磁阀门和第二电磁阀门。本发明不仅能够对动力锂电池和驱动电机进行有效的热管理,使得动力锂电池和驱动电机工作在最合适的温度范围内,以发挥出最优的使用性能,还能够降低整车质量与成本,有效利用驱动电机及电机控制器运行过程中产生的热量,节约能源。
本发明公开一种热管理材料及其制备方法、应用,其中,方法包括步骤:按重量百分比计,将5 10%的多层片状石墨烯和2 5%的碳纤维缓慢加入熔融状态下的60 80%的长链烷烃中,搅拌均匀得到初步相变材料;往初步相变材料中添加2 5%的阻燃剂并搅拌均匀,得到复合阻燃剂的相变材料;将5 10%的增强树脂和5 10%的吸油树脂混合并加热至熔融状态后,加入复合阻燃剂的相变材料,持续搅拌预定时间,冷却后即制得热管理材料。本发明制备的热管理材料具有很强的阻燃、绝缘、高储热以及导热性能,将热管理材料与新能源动力锂电池表面接触使用,不仅可以达到良好的导热效果,还可以起到储蓄热能的效果,解决锂电池组瞬间热量突升的情况,降低热失控的风险,提高电池组的安全性能。
公开了一种牵引电池热管理系统和方法。一种电池热管理系统包括容纳多个电池单元的内壳体和包围内壳体的外壳体。在内壳体的外表面与外壳体的内表面之间限定流体通道。热管理系统还包括与流体通道流体流动连通的流体循环器,以选择性地使第一导热流体和第二导热流体中的一种循环通过流体通道。
本实用新型公开了一种带蓄热加热功能的燃料电池热管理系统,包括小循环水路系统、大循环冷却系统和去离子水循环系统等水循环系统和以控制器ECU为核心的控制系统。小循环水路系统采用蓄热器实现对燃料电池的低温加热功能,相对于传统的电加热器技术,具有控制精度更高、更节能高效的优点。同时,本实用新型采的去离子水循环系统巧妙地将离子交换器设计在大循环水路的除气管路上面,将系统除气功能和去离子功能完美的结合起来,有效地避免了现有技术中的高水阻离子交换器对主循环水路的影响。