公开了电池冷却剂回路控制。一种车辆包括被布置成通过制冷剂系统的冷却器和冷却剂系统的散热器而被冷却的牵引电池。冷却剂系统包括比例阀,所述比例阀包括一对第一出口和第二出口,第一出口和第二出口均根据比例阀的位置选择性地接收流入比例阀的一定比例的冷却剂。冷却剂系统还包括连接到第一出口并被布置成将冷却剂输送至冷却器的冷却器回路以及连接到第二出口并被布置成将冷却剂输送至散热器的散热器回路。控制器被配置成响应于制冷剂系统开启,致动比例阀,以对第一出口和第二出口之间的冷却剂进行配比,使得通过冷却器传递的热受冷却器容量的限制。
本发明提供一种车辆的热管理和过滤系统。热管理系统包括用于调节电池温度的热环路。过滤器位于电池的上游以过滤液体冷却剂。热管理系统还包括与电池热环路流体连通的第二热环路。第二热环路对除了电池之外的车辆系统进行热控制。电池热环路包括多个电池单体。多个换热器翅片位于各个电池单体之间,以提供冷却剂来调节电池温度。过滤器具有基于翅片的过滤器特性的过滤传递函数。
本实用新型揭露了一种电池包加热散热二合一的热管理系统,包括一前后向延伸的散热座、固定连接于所述散热座前侧或后侧的风扇、前后向延伸并固接于散热座的PTC加热器以及蒸发散热管,所述散热座内设置有交错连接的散热鳍片,PTC加热器工作时,热量迅速传递到散热鳍片上,汽车空调的制冷设备往蒸发散热管内灌入冷空气,该冷空气在蒸发散热管移动,从而快速传递到散热座的散热鳍片上,风扇将散热鳍片上的热量或冷空气吹到每个电芯位置,起到给电芯迅速加热或降温的效果,因为PTC加热器与蒸发散热管以及风扇均固接于散热座上,从而本实用新型整体体积小,不需占用很大空间;而且减少了系统阻抗,所以风扇流量效率高,还节省了制造成本。
本发明实施例提供一种方形电池模组和热管理方法,该所述方形电池模组包括进液口、出液口、壳体、多组单体电芯组以及至少一个液冷扁管,所述液冷扁管包括进液端和出液端,所述壳体一端开口,且该壳体设置有容置腔,所述容置腔相对的两个侧壁上分别开设有第一通孔和第二通孔;所述多组单体电芯组设置于所述壳体,所述至少一个液冷扁管迂回设置于多组所述单体电芯组之间,所述进液口设置于所述第一通孔,所述进液端设置于所述第二通孔,所述出液端与所述出液口连接。本发明能够有效提高方形电池模组中的热量散失效率,以最大程度保障方形电池模组的工作性能。
本发明涉及一种燃料电池系统热管理控制装置及系统,其中控制装置燃料电池系统热管理控制装置,包括机壳以及设于机壳中的控制器,热管理控制装置包括用于接收整车控制器信号的整车CAN接口和用于连接散热器风扇的风扇控制接口,CAN接口和风扇控制接口均与控制器连接;控制器接收由整车控制器发送的散热器风扇需求后,通过风扇控制接口向散热器风扇发送PWM信号以控制散热器风扇转速,并在散热器风扇故障时向整车控制器发送对应故障代码。与现有技术相比,本发明有效解决了燃料电池进水温波动大、散热器散热量无法智能匹配燃料电池需求的难题,真正实现燃料电池出水温波动幅度控制在±1℃。燃料电池系统始终工作在50℃~70℃适宜温度区间。
公开了电池冷却剂回路控制。一种车辆包括具有冷却器的制冷剂系统以及具有冷却器回路和散热器回路的冷却剂系统。冷却器回路被布置成使冷却剂循环通过冷却器,散热器回路被布置成使冷却剂循环通过电池、散热器和连接到旁通管道的旁通阀。控制器被配置成响应于环境空气温度超过电池冷却剂温度,致动旁通阀以使冷却剂循环到旁通管道而绕过散热器。
一种热管理模块及其组装方法,该热管理模块包括固定连接的外壳和管道,所述外壳内设有第一环形密封件和可旋转的阀体,所述第一环形密封件抵靠在所述阀体上以进行第一密封;所述第一环形密封件的轴向一端伸入所述管道内,并与所述管道的内周面相抵以进行第二密封。本技术方案降低了外壳的制造成本,缩短了热管理模块的组装时间。
一种热管理模块,包括外壳和位于外壳内的驱动轴,外壳具有沿驱动轴的轴向依次设置的第一内腔、分隔部、第二内腔,第一、二内腔被分隔部隔开,分隔部设有供驱动轴穿过的通孔,驱动轴的轴向一端伸入第一内腔内,第二内腔用于容纳驱动驱动轴旋转的驱动装置;外壳还设有收集腔,收集腔具有开设在通孔的孔壁上的收集入口,收集入口在轴向上位于通孔的第一、二端口之间,收集腔用于从收集入口收集第一内腔内的自面向第一内腔的第一端口泄漏的冷却剂。本技术方案无需在外壳的外部设置专门的用来收集泄漏冷却剂的容器,减小了热管理模块的占用空间。
本实用新型涉及基于热管理的活塞环 缸套低摩擦实验系统,其特征在于该系统包括用于活塞环 缸套固定并传热的缸套固定及传热装置、为系统提供恒温润滑油的恒温润滑油路和用于驱动曲柄连杆机构及活塞环 缸套部件的调速电动机;所述缸套固定及传热装置包括纵向固定板、夹具、缸套电加热器、活塞环电加热器、缸套热电偶、活塞环热电偶和径向弹性固定环,在缸套的左右两侧分别对称设置有一个纵向固定板,每个纵向固定板的上下内表面之间固定缸套,纵向固定板的上下两端均安装有预紧螺栓,在纵向固定板与缸套接触的端面上均设有压力传感器;在缸套的外侧沿缸套高度方向均匀布置有若干数量的缸套电加热器。
一种热管理模块,包括第一、二外壳,第一外壳具有用于容纳驱动轴的第一内腔,第二外壳具有用于容纳驱动装置的第二内腔,第一、二外壳沿驱动轴的轴向依次设置;第一、二外壳在轴向上面对彼此的一端抗相对旋转地配合;热管理模块还包括卡扣件,第一外壳设有第一凹陷部,第二外壳设有第二凹陷部,第一、二凹陷部在驱动轴的周向上依次设置,卡扣件可拆卸地嵌入第一、二凹陷部内,并阻止第一、二外壳沿轴向分离。本技术方案中第一外壳和第二外壳的拆卸方便。
一种热管理模块,包括外壳和管道,外壳设有M个第一连接点,管道设有N个第二连接点,M大于N,所有第一连接点中挑选N个作为一组,至少有两组第一连接点能与所有第二连接点一一对应,不同组的第一连接点与所有第二连接点一一对应时,管道相对于外壳位于不同的角度。或者,N大于M,所有第二连接点中挑选M个作为一组,至少有两组第二连接点能与所有第一连接点一一对应,不同组的第二连接点与所有第一连接点一一对应时,管道相对于外壳位于不同的角度。外壳和管道在对应的第一、二连接点处进行可拆卸固定连接。本技术方案的热管理模块能适应多种角度的管道的安装,使得热管理模块的通用性得以提高。
便携式计算设备中的热管理区分由稳定工作负荷引起的温度升高和由瞬时工作负荷引起的温度升高。如果确定监测到的温度升高是由稳定工作负荷引起的,则应用针对稳定工作负荷而优化热性能的热参数的配置。如果确定温度升高是由瞬时工作负荷增加引起的,则应用针对瞬时工作负荷而优化热性能的热参数的配置。设备包括在集成电路管芯上的至少一个第一温度传感器和不在所述集成电路管芯上但在所述便携式计算设备的外壳内的至少一个第二温度传感器。通过计算响应于所述至少一个第一温度传感器的第一温度值与响应于所述至少一个第二温度传感器的第二温度值之间的差值,并将所述差值与阈值进行比较来确定工作负荷。