本发明公开了一种用于可换电池包的纯电动汽车热管理方法,包括压缩机,所述压缩机一侧连接冷凝器,所述压缩机另一侧连接HVAC总成和蒸发器,所述压缩机一侧设置膨胀箱,所述膨胀箱一侧连接散热器,所述散热器一侧有冷凝器,所述散热器另一侧有电子风扇,所述膨胀箱另一侧连接水泵A,所述水泵A一侧连接水泵B,所述水泵A一侧连接电机控制器,所述电机控制器一侧连接有电机,所述水泵B另一侧设置有PTC,所述PTC一侧设置有鼓风机A,所述鼓风机A一侧设置有加热器,所述加热器一侧设置有乘员舱,所述乘员舱一侧设置有HVAC总成,所述HVAC总成一侧连接有三通阀,所述三通阀一侧连接有膨胀阀,所述膨胀阀一侧设置有鼓风机B,所述鼓风机B一侧设置有蒸发器,所述蒸发器一侧设置有电池包,所述电池包一侧设置有加热膜。
本实用新型提供了一种用于新能源汽车测试的多通道融合数据采集系统,包括上位机;上位机分别与CAN测试盒及路由器连接;路由器分别与功率分析仪、低速数据采集卡及高速数据采集卡连接。本实用新型一种用于新能源汽车测试的多通道融合数据采集系统,配合使用上位机、CAN测试盒、路由器、功率分析仪、低速数据采集卡及高速数据采集卡,可同步采集并监控多通道融合物理信号和CAN信号,为新能源汽车整车能量流、热管理情况提供运行参数,同时可以为整车驾驶性和舒适性等性能评价提供客观依据,为新能源汽车CAN信号的解析、整车对标以及性能评价工作提供技术支持,系统集成度高,使用方便。
本发明提供一种用于增程式车辆的控制方法、控制系统及车辆,用于响应整车控制器对增程器的控制需求,其中,增程器包括发动机和发电机,控制方法包括上电步骤:对增程控制器上电使其自检,在自检无误后对发动机控制器和发电机控制器进行上电;启动步骤:增程控制器收到整车控制器对增程器的启动使能请求后,启动发动机;停机步骤:整车控制器发出对增程器无启动使能请求,且整车控制器无功率请求时,发动机停止工作;下电步骤:增程控制器接收高压断电指令,以根据增程器的状态切断高压,并控制发动机控制器和发电机控制器的高电压切换为低压电。本发明解决现有技术中的增程式车辆只有三种工作状态而无法使得增程式车辆处于最佳的工作状态。
本实用新型公开了一种用于质子交换膜燃料电池的热管理系统,属于燃料电池领域,电池堆上设置有第一进口、第二进口、第一出口和用于第二出口,第一出口和第二出口均与集水器连接,集水器与分水器连接,分水器与第一进口之间和分水器和第二进口之间分别设置有第一速热器和第二速热器,分水器连接有补水器;电池堆上设置有温度传感器,温度传感器连接至温控器,第一速热器和第二速热器均与温控器连接;第一速热器和第一进口之间以及第二速热器和第二进口之间分别设置有第一散热风扇和第二散热风扇,分水器上设置有第三散热风扇。本实用新型可以在燃料电池的启动阶段为电池腔体辅助加热,在使用过程中腔体温度能够保持动态平衡,提高发电效率。
一种动态热管理方法包括:测量第一装置的当前温度;使用所述当前温度来计算允许功率;使用第一数据导出与所述当前温度及所述允许功率对应的允许频率,以及以所述允许频率来修改所述第一装置的工作频率。所述第一数据是与所述第一装置所属的第一群组相关的数据,且所述第一数据包括与温度及频率对应的功率值。
本发明涉及一种用于圆柱形电池的热管理模块及其制备方法和电池组,所述热管理模块包括热管理材料成型体,且所述热管理材料成型体中设有多个用于容纳圆柱形电池的圆柱孔;所述热管理材料成型体由热管理材料通过成型方法制得;所述热管理材料包含以下质量百分比的组分:相变材料,55~90%;导热填料,4~20%;阻燃剂,4~20%;短切纤维,2~10%。本发明的热管理模块通过添加短切纤维,能够起到有效的增强作用,可较大程度地提高热管理材料中相变材料的含量,进而提高热管理模块的储热能力,使其对温度的调节控制更稳定。
一种用于产生应急电力的方法和系统(60),该系统包括:氢存储系统(62),其被配置成供应氢气;空气输送系统(64),其被配置成在预定温度下供应空气;以及燃料电池系统(66),其与氢存储系统和空气输送系统联接,并且被配置成在涉及所述氢气和所述空气在所述预定温度下的化学反应的功率输出下发电。
本发明涉及一种用于动力传动系的热管理的装置,该装置包括主壳体(1),该主壳体容纳电机(2)和该电机的冷却回路以及包括润滑回路的减速器(3)。所述主壳体包括油底壳(20)以及分区(4),该油底壳被安排在所述主壳体的下部分中,该分区将该主壳体分成两个部分,在该两个部分中安排有所述发动机(2)和该发动机的冷却回路以及所述减速器(3)和该减速器的该润滑回路,同时油道(6)在该油底壳中延伸穿过所述分区以便使所述两个部分连通并且包括在该减速器侧上的一个末端,该末端设置有用于调节油流量、由油温控制的阀(7),以便在该减速器侧上的油温达到预定温度阈值时关闭所述油道(6)中的油通路。
提供了一种热管理系统,其用于由内燃机(ICE)提供动力的车辆。系统包括:冷却剂回路,冷却剂回路配置为使冷却剂循环并且在冷却剂与附属于车辆的热消耗体之间传递热量;以及制冷剂回路,制冷剂回路配置为使制冷剂循环以便使得制冷剂能够从由ICE生成的排气提取热量并且随后将热量传递至冷却剂。制冷剂回路可以包括如下一个或多个:排气热交换器、压缩机、冷却剂热交换器、冷凝器、以及蒸发器。经由冷却剂热交换器被传递至冷却剂的热量可以被传递至一个或多个热消耗体,包括:ICE、涡轮增压器、油加热器、加热器芯、排气再循环冷却器、车轴、差速器、排气处理装置、以及SCR(选择性催化还原)或者SCRF(选择性催化还原过滤器)装置的还原剂储器。
本发明公开了一种汽车发动机冷却系统及冷却方法,包括缸体、缸盖、蓄水壶、暖通、散热器、机油冷却器和热管理模块;热管理模块具有控制阀,常通的缸盖水套接口、蓄水壶接口和机油冷却器接口以及通过控制阀可调节接通面积的缸盖过水道接口、暖通接口和散热器接口。冷启动时,使缸盖过水道接口、暖通接口和散热器接口的接通面积都为0;暖机时,使缸盖过水道接口、散热器接口的接通面积为0,使暖通接口的接通面积为100%;热机时,使散热器接口的接通面积为0,使暖通接口、缸盖过水道接口的接通面积为100%;高温时,使缸盖过水道接口、暖通接口和散热器接口的接通面积都为100%。本发明能提高暖机速度和机油升温速度,降低油耗。
一种电池包热管理系统,包括水箱、泵机、温控水箱、风冷散热器、管道以及电磁阀门,所述管道包括第一管道、第二管道、第三管道、第四管道、第五管道以及第六管道,所述电磁阀门包括第一阀门以及第二阀门;所述水箱的出水口通过所述第一管道与管接头相连,所述管接头通过所述第二管道与所述泵机的进水口相连,所述管接头还通过所述第三管道与所述温控水箱的出水口相连以及通过所述第四管道与所述风冷散热器的出水口相连,所述水箱的出水口还通过所述第五管道与所述风冷散热器的进水口相连;所述第一阀门设置于所述第一管道上,所述第二阀门设置于所述第五管道上;上述电池包热管理系统可靠性强且效率高。
本发明涉及一种电池热管理装置及设有该装置的电池,电池热管理装置包括:主壳体,包括容纳腔及连通容纳腔的开口端;导热分隔结构,形成有多个电芯容纳空间,相邻电芯容纳空间之间形成有冷却空间;冷却循环结构,用于驱动冷却液在主壳体内循环流动;散热结构,安装于主壳体开口端并覆盖导热分隔结构,包括散热片组及散热风扇,散热片组设于主壳体的开口端,散热风扇设于散热片组远离导热分隔结构一端。上述电池热管理装置,冷却液在冷却循环结构的驱动下在相邻两个电芯容纳空间之间的冷却空间中循环流动,从而不断带走电芯容纳空间中的电芯产生的热量以达到降温散热效果。散热风扇可将外界环境中的空气卷入散热片组以提高散热片组的散热效率。