本实用新型提供了一种汽车热管理系统和纯电动汽车,涉及电动汽车技术领域。纯电动汽车包括上述汽车热管理系统。汽车热管理系统包括电池热管理子系统、电驱冷却子系统和热交换器;电池热管理子系统和电驱冷却子系统均连接于热交换器;电池热管理子系统用于对热交换器吸收热量、并对电池组加热,或者用于对电池组制冷;电驱冷却子系统用于对汽车电驱设备制冷,或者用于乘客舱加热,或者用于对热交换器释放热量。该汽车热管理系统的加热能力和制冷能力较强、能源利用率较高、成本较低。
本实用新型提供了一种汽车热管理系统和纯电动汽车,涉及电动汽车技术领域。纯电动汽车包括上述汽车热管理系统。汽车热管理系统中,汽车热管理系统包括制冷剂子系统、电驱冷却子系统和热交换器;制冷剂子系统和电驱冷却子系统均连接于热交换器;制冷剂子系统用于对乘客舱制冷,或者用于对热交换器吸收热量;电驱冷却子系统用于对汽车电驱设备制冷,或者用于乘客舱加热,或者用于对热交换器释放热量。汽车热管理系统的加热能力和制冷能力较强、能源利用率较高、成本较低。
本发明提供了一种发动机热管理系统,涉及车辆发动机技术领域。发动机热管理系统,包括第一循环冷却回路和第二循环冷却回路。第一循环冷却回路包括由管路串接的机械水泵、缸体阀、缸体水套和缸盖水套,其中,在缸体阀前,机械水泵还与缸盖水套通过管路直接相连,第二循环冷却回路包括由管路依次串接在缸盖水套后的节温器和散热器。本发明的发动机热管理系统集成化高,布置合理,分离式冷却、缸盖集成排气歧管可以实现发动机快速升温,暖机阶段加热机油,减小摩擦,满足整车采暖,高温冷却机油、增压器、缸体缸盖燃烧高温区域,极大提升了发动机的性能,降低了发动机油耗,优化了发动机排放。
本发明涉及发动机热管理的技术领域,尤其是一种水冷发动机智能热管理系统,包括采集汽车车速数据的车速采集装置、采集水冷发动机外部风速数据风速传感器、采集水冷发动机内冷却液温度数据的冷却液温度传感器以及冷却液温度智能调节装置,车速采集装置、风速传感器、冷却液温度传感器以及冷却液温度智能调节装置采用CAN总线连接;冷却液温度智能调节装置包括主控制器,以及与主控制器电连接的冷却风扇控制器、水加热控制器、水泵控制器和进气格栅控制器;主控制器包括数据接收模块、冷却液温度参数设定模块、和冷却液温度调节模块,解决了现有发动机热管理系统均没有考虑水泵流量及加热器加热功率对冷却液温度变化影响的问题。
本发明涉及发动机热管理的技术领域,尤其是一种水冷发动机智能热管理系统,包括数据接收模块,用于接收所述汽车车速数据、所述水冷发动机外部风速数据以及所述水冷发动机内冷却液的温度数据;冷却液温度参数设定模块,用于设定冷却液的温度参数并与数据接收模块传输的数据进行对比;冷却液温度调节模块,用于调节所述水泵控制器和所述冷却风扇控制器或所述水泵控制器和所述水加热控制器使所述冷却液温度与所述冷却液温度参数设定模块设定的冷却液温度参数相匹配,解决了现有发动机热管理系统均没有考虑水泵流量及加热器加热功率对冷却液温度变化影响的问题。
本发明涉及电动汽车动力电池组的温控技术领域,尤其是涉及一种基于相变材料的电动汽车电池热管理系统。与汽车动力电池组电池单体组合后安装在汽车上,并与汽车的电子控制单元ECU相连接,是由相变材料温控箱、电池换热组合体、换热管道、冷却水箱、带调速器的水泵、散热器、气枕保温垫、相变材料构成;将进水总管与带调速器的水泵相连接,带调速器的水泵与冷却水箱相连接,冷却水箱通过管路与散热器相连接,散热器的与出水总管相连接,各个热电偶及带调速器的水泵与车载电子控制单元ECU相连接。本发明提高了电池组的温度一致性,节约了能源;利用相变材料的潜热和温控箱的隔热能力在一定时间内维持电池组的温度,有利于汽车在低温下的启动和充电。
本实用新型公开了一种风冷电池包系统,包括电池箱主体和空调,电池箱主体包括若干层对称第一横杆和与第一横杆相对应的第二横杆,所述第一横杆和第二横杆之间连接有第一竖杆,每层第一横杆之间安装有风冷板,所述第二横杆外侧之间设有第一铁皮,所述第一铁皮上设有若干第一出风口,所述空调包括空调主体,所述空调主体左右两侧分别设有与第一出风口相对应的第二出风口。本实用新型有益效果:不仅能够实现电池包内部多层风冷板的热管理效率,而且具有高强度。
本实用新型涉及电池热管理技术领域,具体涉及一种热管理设备及电源装置,热管理设备包括具有容纳空间以容纳多个电芯的壳体结构,设置于壳体结构的冷媒流通通道,设置于电芯的表面的受热膨胀层,设置于电芯与受热膨胀层之间以检测压力值的压力传感器,以及与所述压力传感器电连接以接收所述压力值的控制器,所述控制装置中预存有第一预设值,所述控制装置在存在所述压力值大于所述第一预设值时,控制所述进口和出口与所述储存设备连通。通过上述设置以对各电芯起到有效可靠的热管理作用。
本实用新型涉及一种热管理系统的水室,涉及一种汽车热管理系统领域。所要解决的技术问题是水室两端的水温不同,导致了电芯降温不均匀,影响了电芯性能和寿命。包括:腔体,所述腔体内具有至少一个水室隔板,水室隔板的两侧分别具有相互隔离的第一分室和第二分室;第一分室设有第一进水口和第一出水口,第二分室设有第二进水口和第二出水口;第一分室的第一进水口和第一出水口与第二分室的第二进水口和第二出水口反向设置。本实用新型热管理系统的水室至少具有下列优点:消除了水室两端水温的变化,保证电芯的温度变化均匀,改善电芯性能,延长电芯的寿命。
本发明公开了一种基于热阻网络模型的电池热失控预测方法,方法把大型电池包内的电池单体简化成热网络节点,将电池组系统内的对流、导热、辐射过程简化成热阻,利用电路求解方法实现电池组传热过程的快速计算。此外,将不同的冷却方式简化成相应的热阻模块嵌入电池组热阻网络,可以评估冷却方式对热失控防护的有效性。热失控预测过程包括:基于电池单体的传热特征参数建立单体热阻网络;计算电池稳态工作发热量并设定相应的热管理方案,通过实验获得热失控过程电池单体发热特征;建立电池组热阻网络;给定热失控发生位置并设定正常电池热失控温度下限;记录预测电池组损毁进度和损毁时间,并评定不同热管理措施的防护效果。
本发明公开了一种电动汽车热管理系统,包括第一热交换管路、第一温度传感器、第一电子水泵、第一三通管和第一溢流壶,第一热交换管路依次连接动力电池、充电机、电机控制器和电机,用于将充电机、电机控制器和电机产生的热量向动力电池进行传递,通过将动力电池通过管路与车辆的电机、充电机以及驱动电机控制器通过第一热交换管路相连通,通过第一热交换管路将电机、充电机以及驱动电机发热时产生的热量用于对动力电池的加热,促进了车辆工作时的废热利用,减少了能耗,提高了长期低温低速行驶时电池的加热需求。
本发明公开了一种快速充电系统及其充电方法,快速充电系统包括充电桩系统、车载动力电池系统以及外置热管理系统;充电桩系统上设置有充电接口;充电桩系统连接普通供电网络,以存储来自普通供电网络输入的交流电,并将存储的交流电转化为相对较高输出功率的直流电从充电接口输出;车载动力电池系统包括多个动力电池,动力电池之间设置有供冷却媒质流动的导热管路,导热管路上设置有导热接口;外置热管理系统通过导热接口与车载动力电池系统连接;外置热管理系统中储存有冷却媒质,充电时,外置热管理系统利用导热接口,向导热管路中输入冷却媒质,对动力电池进行冷却。本发明的快速充电系统及其使用方法,低成本、易于实现、且充电质量稳定。