热传商务网-热传散热产品智能制造信息平台
信息列表
  • 具有热PCM和冷PCM的绝缘热屏障

    公开了一种热屏障(3),所述热屏障(3)帮助在由该屏障围绕的体积和 或至少一个内部结构组件(1)中保持温度。该屏障包括第一组件(3a),其包含在第一温度下改变其状态的至少一个相变材料(PCM),第二组件(3b),其包含在与第一温度不同的第二温度下改变其状态的PCM,以及第三热绝缘组件(5a、5b),其设置在包含PCM的第一和第二组件之间或在第二组件(3b)的外部。

  • 具有集成旁路的用于电池热管理应用的热交换器

    本发明公开了一种用于电池热管理应用的热交换器。所述热交换器具有至少一个内部双行程流动通路,所述至少一个内部双行程流动通路具有入口端和出口端以及通过大致U形转弯部分互连的至少第一流动通路部分和至少第二流动通路部分。入口歧管与所述内部流动通路的所述入口端流体连通,以用于将进入的流体流递送到所述热交换器,而出口歧管与所述内部流动通路的所述出口端流体连通,以用于从所述热交换器排出输出的流体流。旁路通路流体地互连所述进入的流体流和所述输出的流体流,所述旁路通路允许来自所述进入的流体流的流体转移到所述出口歧管,从而旁通绕过所述热交换器的所述至少一个内部双行程流动通路。

  • 一种大功率锂离子电池热管理系统

    本实用新型公开了一种大功率锂离子电池热管理系统,包括由多个锂电池单体构成的锂电池模组、若干热管散热单体、模组箱体、相变冷却液、温度液位采集器等。本实用新型通过将电池单体浸没于相变冷却液,并结合热管散热单体快速带走箱体内部热量。使车载储能系统在高温环境下能工作在适宜的温度范围之内,能够有效提高电池单体的温度一致性,能够有效提高轨道车辆储能系统高温下的安全可靠性,并且能够提高经济指标低、体积质量指标低和环保指标。

  • 液冷系统及电池系统

    本实用新型实施例提供一种液冷系统及电池系统,该液冷系统包括进出水口模块、截止阀以及液冷管道,该进出水口模块包括第一通液口、第二通液口和第三通液口,其中,截止阀的一端对接第一通液口、另一端与外部整车液冷系统连接。第二通液口和第三通液口分别与液冷管道连接。如此,第一通液口在接收从外部整车液冷系统输入的冷却液后可将冷却液分别通过第二通液口和第三通液口充入液冷管道中,或者在需要排出冷却液时,可通过第二通液口和第三通液口接收从液冷管道排出的冷却液并通过第一通液口排出。该液冷系统利用进出水口模块简化了液冷系统管路连接,并且加速了冷却液的充入及排出速度,更有益于系统对电池模组的热管理。

  • 一种用于新能源汽车电池热管理的环路热管

    一种用于新能源汽车电池热管理的环路热管,包括冷凝器、折弯管、加热器、连接管、第一支管、第二支管、第一水泵、第二水泵、储液器和阀门,其特征在于:所述的折弯管两端分别与冷凝器和加热器相连接,所述的冷凝器和加热器又通过连接管相互连接形成回路,所述的连接管上安装有第一水泵,所述的折弯管上连接有第一支管,所述的第一支管上安装有阀门,所述的冷凝器和第一水泵之间的连接管上安装有第二支管,所述的第二支管上串联安装有第二水泵和储液器,本实用新型克服了现有技术的不足,该环路热管运行稳定,恒温效果好,能耗低。

  • 一种电池模组导热板排布优化方法

    本发明公开的是一种电池模组导热板排布优化方法,所述排布优化方法包括以下具体步骤:步骤一:电池模组由N个电池单体组成,电池单体与单体之间留一定的空隙,从电池模组外侧至模组中心的空隙逐渐增大;步骤二:以电池使用工况的电流大小和使用时间为依据,以步骤一中电池单体与单体之间的空隙以及电池单体与模组箱体之间的空隙为变化参数搭建热仿真模型;步骤三:分别计算电池单体纵向和横向的热导率。本发明不仅可以在不增加工艺复杂性的情况下合理布局板材,减轻动力电池模组的重量,而且可以增加电池模组的散热能力。

  • 储能柜用电池热管理装置

    本发明提供一种储能柜用电池热管理装置,该储能柜用电池热管理装置包括:冷却部件、储能柜柜体、至少一个电池模组及高压箱,至少一个电池模组中的每一个电池模组均与高压箱连接,且至少一个电池模组和高压箱均设置在储能柜柜体的内部,冷却部件设置在储能柜柜体的内部,且与至少一个电池模组和高压箱间隙设置;其中,冷却部件用于向至少一个电池模组和高压箱输入冷却气体,以通过冷却气体降低电池模组和高压箱的温度。本发明提供的储能柜用电池热管理装置,提高了储能柜内的换热效率,并延长储能柜的循环使用寿命。

  • 电池热管理系统及储能集装箱

    本发明提供一种电池热管理系统及储能集装箱。其中,电池热管理系统包括:控制装置、冷却装置以及温度传感器;温度传感器设置在电池模块上,用于检测电池模块的温度,并发送温度信号给控制装置;冷却装置包括制冷器以及风道,制冷器的出风口与风道的进风口连通,风道的出风口设置在电池模块上;控制装置分别与温度传感器和制冷器电连接;控制装置根据温度信号控制制冷器的工作状态。本发明控制装置根据温度信号判断电池模块的温度,进而控制制冷器工作产生冷却气体,通过风道释放到电池模块上,对电池模块进行有效降温和散热,降温效率高,满足电池模块的降温要求,保证电池有效工作,避免电池模块温度较高影响储能集装箱的使用寿命。

  • 一种用于电池的全气候热管理系统及其工作方法

    本发明公开了一种用于电池的全气候热管理系统及其工作方法,当锂电池组处于低温条件时,控温板内和循环管道内的相变材料为固态,然后通过外部加热或内部加热的方式对电池组进行加热,此时固态的相变材料起到保温储热的作用;当锂电池组处于高温条件时,此时控温板内和循环管道内的相变材料为液态,开启循环泵,驱动液态的相变材料从控温板的上部流体口或下部流体口流出在换热管组处进行散热后再回流入控温板,对锂电池组进行液冷散热过程。因此本发明能够实现全气候条件下的电池热管理,有效保证电池容量,提高电池使用寿命,并且能够简化全气候条件下的热管理系统,具有应用范围广、节能环保、结构简单、使用寿命长、运行稳定可靠等优点。

  • 一种BMS热管理系统及其控制方法和装置

    本发明公开了一种BMS热管理系统及其控制方法和装置,BMS热管理系统包括BMS、膨胀装置、加热器、热交换器、循环泵、第一温度传感器、三通阀、散热器、空调冷却回路和控制器,控制方法包括:通过第一温度传感器采集三通阀冷却液进口的温度作为第一温度,并通过第二温度传感器采集BMS的电芯的温度作为第二温度;控制器根据第一温度、第二温度以及预设阈值判断冷却液是否需要进入BMS内部,并根据判断的结果控制三通阀的冷却液出口联通BMS的进液端或联通散热器的进液端。本发明根据BMS的电芯与冷却液的温差控制冷却液进入或不进入BMS内部,避免对电芯造成的冷冲击或热冲击,延长了电芯的使用寿命,可广泛应用于动力能源领域。

  • 基于磁制冷技术的温度控制系统、电动汽车电池组热管理系统及方法

    本公开提供了一种基于磁制冷技术的温度控制系统、电动汽车电池组热管理系统及方法,散热箱与容纳箱的一侧通过热流管路连接,另一侧通过冷流管路连接,形成回路,散热箱包括散热箱体,外沿依次套设有多个散热片,内表面设置有电磁体和加热管路;容纳箱包括外部的隔热箱体和内部的微通道隔板箱,微通道隔板箱包括多个用微通道隔板相隔的容纳室,箱体前、后壁面内部设置有横向和纵向的若干连接管路,微通道隔板内部均设置有多个连接支管,连接支管与连接管路连通,利用磁制冷材料的磁热效应导致磁流体冷却液流出散热箱时产生温降,能够有效降低从冷流管道进入容纳箱中的磁流体冷却液的温度,保持被作用对象的内部温度的一致性。

  • 热管理系统、热管理方法及汽车

    本申请公开了一种热管理系统、热管理方法及汽车,其中,热管理系统包括电机冷却系统和电池热管理系统,还包括三通阀、分支回路和换热器,三通阀连接于电机冷却系统的驱动电机和散热器之间的第一冷却液回路上,分支回路的一端与三通阀一个出口连接,分支回路与第一冷却液回路并联,分支回路和电池热管理系统的第二冷却液回路通过换热器并联热交换。当电池热管理系统在低温情况下对电池进行加热时,利用电机冷却系统吸收的驱动电机的热量辅助加热电池热管理系统中的电池,从而减少了电池热管理系统中的电池加热耗电量。