本实用新型涉及一种热泵型智能化多回路电动汽车热管理系统,包括动力电池组、电驱模块、车载充电机、DC DC转换器、电池散热器、电池冷却器、电机散热器、电动水泵、电动油泵、膨胀水箱、PTC加热器、电机热交换器、电动压缩机、蒸发器、储液干燥壶、暖风芯体,还包括AC外置热交换器和内置冷凝器,通过管路以及设于管路中的四通阀、三向阀、直通阀形成多个热管理控制的回路。与现有技术相比,本实用新型系统乘员舱需要采暖时,不仅能充分利用电驱模块组件的废热,且可切换热泵空调为制热模式,能效比高,减少电量消耗,当热泵采暖无法满足超低温环境下供暖需求时,又可让PTC采暖小循环回路同时工作,满足极限工况采暖需求。
本实用新型提供了一种混合动力汽车热管理系统及车辆,其中,混合动力汽车人管理系统包括至少两条用于为电池冷却的散热回路,各散热回路并联;还包括至少两条用于为电池加热的加热回路,各加热回路并联;其中,第一条散热回路上串设有冷却液-冷媒换热器,第二条散热回路上串设有冷却液-空气换热器;第一条加热回路上串设有发动机散热机构,第二条加热回路上串设有电机散热机构。本实用新型的电池加热和冷却方式比较多样,可以根据电池的温度选择合理的加热或冷却方式为电池加热或冷却,实现了对电池温度的精细控制,提高了电池的加热和冷却效率,保证了电池处于正常的温度环境下,提高了电池的使用寿命,增加了混合动力汽车的续航里程。
本发明属于电动汽车领域,具体提供一种电动汽车及其热管理系统。本发明旨在解决现有的电动汽车的空调系统在冬天制热时耗电量大,影响电动汽车续航里程的问题。为此,本发明的热管理系统包括空调系统、电池热管理系统、电机热管理系统、具有彼此独立的第一通道和第二通道的第一换热器、具有彼此独立的第三通道和第四通道的第二换热器和控制阀。第一通道和第三通道分别串联到空调系统的回路中,第二通道和第四通道分别串联到电池热管理系统的回路中和电机热管理系统的回路中。控制阀能够使电池热管理系统的回路和电机热管理系统的回路串联到一起。本发明具有上述构造的热管理系统能够吸收动力电池和电机产生的废热,减少电动汽车的耗电量。
本发明公开了板式直接式全功能车用热泵空调系统,属于车用热泵空调系统领域,包括压缩机、室内冷凝器、制冷剂压力传感器、第一电子膨胀阀以及室外内交换器;还包括位于第二管路上的第二截止阀、制冷剂温度传感器、单向阀、第二电子膨胀阀以及蒸发器;位于室外内交换器出口端的第一管路的出口处分别设有相互并列的第二管路与第三管路;电动压缩机进气口前端设有液气分离器,还包括第四管路,第四管路上设有第一截止阀。本发明的板式直接式全功能车用热泵空调系统,可以从而实现制冷、加热、除湿、除霜、除雾、化霜等多种功能,通过控制阀的配合保证了系统控制精度,并降低了系统控制难度,可有效提高整个空调系统乃至整车热管理的能效比值。
本发明涉及一种带余热回收的直接热泵型的整车热管理系统,设置有余热回收回路,以将余热回收回路中充电器的热量经板式换热器传输至电动压缩机,从而提高电动压缩机接收到的低温低压气体的温度,进一步降低电动压缩机的工作负荷,提高换热效率、有效地对整车进行热量管理。
本发明公开了一种新能源汽车高效热管理系统,包括设置在HVAC总成以外的集成换热部件、电磁热力膨胀阀、电池包、压缩机、冷凝器和电池低温散热器,其中,所述集成换热部件和电磁热力膨胀阀紧密贴合,以进行热交换。采用本发明提供的新能源汽车高效热管理系统,设计巧妙,易于实现,当环境温度低于电池低温散热器的水温时,采用风冷加水冷的传统冷却方式,不仅稳定可靠,而且能耗极低,基本不会影响新能源汽车的续航里程;当环境温度高于电池低温散热器的水温时,采用传统空调制冷的方式,不仅换热效率极高,而且不受环境温度的影响,换热过程稳定可靠。
本发明提供了一种混合动力汽车热管理系统及控制方法以及混合动力汽车,热管理系统包括高温冷却循环系统以及低温冷却循环系统。高温冷却循环系统包括第一散热器、发动机、发动机水泵以及发动机油冷器。低温冷却循环系统包括第二散热器、开关阀以及电机水泵。该混合动力汽车热管理系统的高温冷却循环系统和低温冷却循环系统可以相互独立工作也可以相互协同工作,适应范围广,满足不同模式下变速器的冷却需求,发动机、变速器和驱动电机的冷却效果好。
本发明公开了一种电池包充电热管理控制方法、相关装置及系统,该方法包括:基于电池管理系统反馈的电池包的状态和充电方式,整车控制器控制电池包进入相应的充电热管理过程,由于充电方式包括了慢充方式和快充方式,因此充电热管理包括慢充热管理和快充热管理,当充电热管理完成,若满足正常充电条件,整车控制器控制电池包由对应的充电热管理模式切换至正常充电模式。本发明通过整车控制器和电池热管理系统协调控制电池包的充电热管理过程,不需要单独安装其他加热装置,精简了电池包结构,节省了成本。
本发明提供了一种移动换电车,该移动换电车包括:换电车本体;设置于所述换电车本体上的举升架,所述举升架与所述换电车本体滑动连接;与所述举升架固定连接的举升器;设置于所述换电车本体上的电升降平台,所述电升降平台与所述换电车本体滑动连接。本发明提供的一种移动换电车,可以行驶至被换电车辆附近,对被换电车辆进行换电服务,避免被换电车辆的移动,提升了换电服务的灵活性。
一种方法,包括从计算设备内的多个温度传感器生成温度信息;以及基于观察到的温度信息的变化率来处理温度信息以生成电压降低阶跃。
本申请公开了风能变流器散热方法、散热装置和散热系统,其中,该风能变流器散热方法,包括:预测风能变流器所在的风力发电机组的发电功率;确定风能变流器中功率器件在所述发电功率下的预期运行温度;获取风能变流器中功率器件的实际运行温度;判断所述实际运行温度是否超出允许的波动范围,所述波动范围根据所述预期运行温度设置;当判断得到所述实际运行温度超出所述波动范围时,调节风能变流器中散热系统的散热效率,直至所述实际运行温度稳定在所述波动范围内。本申请使热设计兼顾考虑风能变流器中功率器件在实际运行过程中的温度周次,从而提升了功率器件的寿命。
本实用新型公开了一种电阻丝液体加热管安装结构,多个加热管安装在安装板上,每个加热管内设有加热丝,多个加热丝依次并联且多个加热管的长度不同。通过上述优化设计的电阻丝液体加热管安装结构,通过将多个电阻丝加热管设计为长度不同电阻不同,从而根据实际使用环境选择适合功率和电阻的加热管,保证加热效率和使用安全性。