热传商务网-热传散热产品智能制造信息平台
信息列表
  • 一种新型的采用热管-PCM耦合热管理技术的热量传递装置

    本发明公开了一种新型的采用热管-PCM耦合热管理技术的热量传递装置,包括电池组、电池组承载单元和热管。包括电池组、电池组承载单元和若干个热管;其中所述电池组沉浸式放置在电池组承载单元中;所述热管嵌入在电池组和电池组承载单元的空隙中。本发明能够有效地保证电池处于理想工作温度范围内并使每一个电池单体保持温度一致性并能够降低散热损耗,能够有效提高散热效率并保证安全可靠性能,并且能够有效减小散热器体积和重量并经济环保。

  • 集装箱式储能系统的电池热管理系统

    本发明公开一种集装箱式储能系统的电池热管理系统,包括箱体、以及设置在箱体内的电池支架、空调机组、电池模组、送风风道、回风风道以及电池热管理控制柜,所述电池热管理控制柜连接控制所述空调机组;所述电池支架包括风墙和支架,所述风墙上设有若干第一进风口和若干第一出风口,所述电池模组设置在所述支架上,所述空调机组设有第一进风口和第一回风口,所述第一进风口和所述送风风道相互连通,所述第一回风口和所述回风风道相互连通,所述送风风道和所述风墙的第一进风口相互连通,所述出风口处设置所述电池模组。本发明的集装箱式储能系统的电池热管理系统,具有多种冷却模式,具有结构紧凑、冷却均匀、主动高效、可快速冷却等优点。

  • 一种纯电动车辆的热管理系统

    本实用新型提供了一种纯电动车辆的热管理系统,包括空调系统和电池热管理系统,空调系统包括蒸发器、第一膨胀阀、冷凝器,还设有用于与电池热管理系统进行热交换的换热器,所述换热器所在的管路还包括第二膨胀阀。本实用新型将纯电动汽车中的空调系统与电池热管理系统相互耦合,使纯电动汽车整车系统热量能够充分地被利用,减少了行车过程中单个系统散热或加热对电池能量的需求。

  • 一种电动车的热管理系统

    本发明公开了一种电动车的热管理系统,包括压缩机、内部冷凝器、外部冷凝器、第一膨胀阀、第二膨胀阀、蒸发器、汽液分离器、电池系统、PTC加热器、换热器、第一动力泵和散热水箱,压缩机、内部冷凝器、外部冷凝器、第一膨胀阀、蒸发器、汽液分离器依次首尾连接,外部冷凝器与汽液分离器连接,外部冷凝器、第二膨胀阀、换热器和汽液分离器依次连接,第一动力泵、PTC加热器、电池系统的散热装置和散热水箱依次首尾连接,第一动力泵和电池系统的散热装置分别与换热器连接。本发明提供的电动车的热管理系统,综合考虑了制冷、制热、化霜、电池系统散热、热量回收等能耗,提高了车辆运行的可靠性和安全性。

  • 一种电动汽车整车热管理系统及其控制方法

    本发明公开了一种电动汽车整车热管理系统,包括电机-散热器回路、PTC加热回路、电池组回路以及空调回路;各个回路之间通过阀门、板式换热器实现热传递及热交换,以满足不同工况下,各部件加热冷却的要求。本发明热管理回路中仅使用阀门实现了电机回路、电池回路、PTC回路的互通。本发明同时公开了一种电动汽车整车热管理系统控制方法,采用电池实际工作温度TB与电池标准工作温度T0差值ΔT1,以及电机出口水温TM与电池实际工作温度TB差值ΔT2作为识别参数,利用模糊控制方法确定合适的回路模式。这种控制方法实现了根据车辆实际情况,实时切换热管理回路模式,最大程度节省电池能耗。

  • 电动汽车的电池系统设计方法及装置

    本发明提出电动汽车的电池系统设计方法及装置。方法包括:对于每一型号的电动汽车,根据该型号的电动汽车的整车长度、整车宽度和整车轴距,计算电池系统包络的最大尺寸;根据该型号的电动汽车的性能要求以及电池辅助器件的尺寸,并结合电池系统包络的最大尺寸,确定该型号的电动汽车的电池系统的设计方式。本发明最终设计出的电池系统不仅满足了电动汽车的高压安全和性能要求,且兼顾了对空间的合理利用,提高了电池系统设计的准确度。

  • 一种电动汽车主动热管理控制方法

    本发明属于电动汽车技术领域,具体涉及一种电动汽车主动热管理控制方法,VCU判定车辆处于停车状态或者车辆已下电;在TMM处于开启状态,VCU根据环境温度设置总线唤醒时间;BMS检测电池电芯温度并发送至TMM;VCU在判定SOC不小于30%时,TMM向VCU发送热管理功率请求,在电芯温度不大于-10℃时,启动电池强制加热回路,并在电芯升温至0℃时,停止电池强制加热回路;在电芯温度不小于50℃时,启动电池强制降温回路,并在电芯降温至40℃时,停止电池强制降温回路。其能保证客户在极高温度与极低温度下用车需求。

  • 一种电动汽车低功耗热管理系统

    本申请涉及电动汽车热管理系统,具体为一种电动汽车低功耗热管理系统,包括电动压缩机、冷凝器、冷媒电磁阀、热力膨胀阀、HVAC总成、电子膨胀阀、冷却器、第一膨胀水壶、第三电子水泵、第四三通阀门与第三三通阀门;其经过组合后形成乘客舱制冷循环回路、电池强制降温循环回路、电池低温散热循环回路、乘客舱采暖循环回路、电池强制加热循环回路、电池余热利用循环回路、电池均温循环回路、电机冷却循环回路。其能有效减少利用PTC及电动压缩机对电池加热与降温,从而减少整车功耗,增加续航里程。

  • 一种氢燃料电池汽车热管理系统及控制方法

    本发明涉及一种氢燃料电池汽车热管理系统及控制方法,包括膨胀水壶,水泵,电子节温器,燃料电池散热器,电磁阀,燃料电池堆,离子交换器。克服现有燃料电池堆不能在过低环境温度条件启动工作的制约,通过在小循环支路设计了辅助水加热方案,实现燃料电池堆低温快速启动,提高燃料电池堆低温环境的适应能力;通过在水路系统增加一路辅助空调水暖换热系统,实现燃料电池堆的废热回收利用,减少了空气加热器的用电需求,节约了整车电能,增加冬季车辆的续航里程;通过燃料电池堆除气装置的设计改进,解决燃料电池堆水路系统在加注和运行过程中的除气难题,提升燃料电池热管理系统工作的可靠性。

  • 一种检验电池热管理系统冷却能力的测试系统及测试方法

    本发明提供了一种检验电池热管理系统冷却能力的测试系统及测试方法,涉及汽车技术领域。该测试系统包括:环境试验箱,待检测的动力电池系统处于环境试验箱的内部,其中动力电池系统包括动力电池和电池热管理系统,电池热管理系统上设置有液体循环管路;液冷试验机组与液体循环管路连通,通过液冷试验机组向液体循环管路的内部输入不同温度的液体;充放电试验机,通过高压连接线与动力电池系统连接;温度传感器,用于检测动力电池的电芯温度。通过将动力电池系统置于环境试验箱,模拟高温环境并进行多次充放电操作,监控动力电池的最高温度以及最大温差,从而判断电池热管理系统的冷却能力及均温能力。

  • 燃料电池汽车综合热管理方法及其快速控制原型实现方法

    本发明提出了一种燃料电池汽车综合热管理方法及其快速控制原型的实现方法,综合热管理以热泵为核心,集成了燃料电池热管理、辅助能源热管理、电机及功率电子热管理、乘员舱热管理,通过综合控制单元进行协调控制。快速控制原型系统包括上位机、快速控制原型机和被控对象;上位机主要实现的功能是系统数学模型的架构及仿真验证、自动生成代码、硬件在环仿真、参数标定与实时监控;快速控制原型机包括软件平台和硬件平台,软件平台包括底层驱动函数和任务执行框架,硬件平台包括信号调理器和数据采集卡;被控对象是整车或试验台架中的目标系统。本发明使燃料电池汽车综合热管理控制的开发得到最大程度的简化,提高了开发效率。

  • 用于飞行器液压系统的热平衡和传输的系统及方法

    本发明涉及用于飞行器液压系统的热平衡和传输的系统及方法,具体提供了一种热管理系统。所述热管理系统包括第一液压系统,用于循环在第一温度下的第一液压液体;第二液压系统,用于循环在比所述第一温度更高的第二温度下的第二液压液体;以及热交换器,将所述第一液压系统耦接至所述第二液压系统,其中,所述热交换器被配置为在所述第一液压液体与所述第二液压液体之间交换热量。

    2019-03-26 00:00:00 #波音公司 #廖健民