本发明公开一种纯电动车型热管理系统,包括采暖系统、强电系冷却系统、电池冷却系统等。其在强电系冷却系统与电池冷却系统之间设置四通阀V2,连通两个回路,在采暖系统与所述电池冷却系统之间设置四通阀V1,连通两个回路。该纯电动车型热管理系统根据电池冷却系统在不同工况下的冷却需求,可以采用强电散热器或者空调系统等方式冷却,降低系统功耗;当有采暖需求或者电池加热需求时,通过四通阀切换回路,可以充分利用高压电加热器(HVH)或者强电系余热为乘员舱采暖、电池加热,能够最大限度的发挥系统部件的功能,有效的利用系统余热,降低系统功耗、提高续驶里程。
本发明提供了一种适用于新能源汽车的电池管理主系统及其控制方法,包括MCU模块、电源管理模块、电流检测模块、液晶显示模块、整组电压及绝缘性能测量模块、热管理模块、时钟模块和存储模块;MCU模块通过读取电流检测模块的电流数据、整组电压及绝缘性能测量模块测量到的总电压和绝缘电阻数据和采集模块通过CAN通道发送的单体电池端电压和温度数据,对电池包的内部状态SOC和SOE进行估算,驱动热管理模块对电池包进行热管理,将电池状态信息和报警信息送到液晶显示模块,并将相应诊断信息存入存储模块。本发明的有益效果是能实现最大限度地利用和保护汽车电池,提高能源利用的效率,节能减排,保障使用的安全性。
本发明提供了一种用于直插存储器模块的冷却模块排。冷却模块排可以包括定位在冷却模块排的同一端部的入口室和出口室。冷却模块排还可以包括与入口室和出口室流体连通的导管。导管的尺寸可以设计成适合装配在直插存储器模块附近。还提供了一种用于直插存储器模块的热管理的方法。该方法可包括将冷却模块排定位在直插存储器模块附近,冷却模块排具有定位在冷却模块排的同一端部的入口室和出口室。
一种用于控制设备的冷却系统的方法,该方法包括确定处理系统的功率负荷,确定设备的功率负荷,至少部分地基于功率负荷设置第一热设定点,确定设备的温度,至少部分地基于第一热设定点调整冷却系统的响应,检测设备的功率负荷中的朝具有较高量级声响响应的较高功率负荷的改变,响应于检测到功率负荷中的改变,在较高功率负荷处设置具有较低量级声响响应的第二热设定点,该第二热设定点至少部分地基于经确定的第二对应声响响应曲线,以及至少部分地基于第二热设定点调整冷却系统的响应。
本实用新型实施例提供一种接头、热交换装置及电池,涉及电池热管理技术领域。其中,所述接头包括第一连接管、第二连接管及用于固定所述第一连接管和第二连接管的固定连接件;所述第一连接管包括第一接口和第二接口,所述第二连接管包括第三接口和第四接口,所述第一接口和第三接口固定于所述固定连接件的一侧,所述第二接口和第四接口固定于所述固定连接件的另一侧;所述第一接口和第三接口相对于所述固定连接件伸出的长度不同,以使所述第一接口和第三接口构成交错结构,避免了水箱在与所述第一接口和第三接口连接时管路之间相互干涉造成操作不便的问题。
一种车辆推进系统,该车辆推进系统包括:原动机,该原动机具有冷却剂进口和冷却剂出口;冷却剂控制阀,该冷却剂控制阀具有与原动机冷却剂出口连通的阀进口、第一阀出口、以及第二阀出口;旁通流路,该旁通流路与第一阀出口和原动机冷却剂进口连通;热交换流路,该热交换流路与第二阀出口和原动机进口连通;热交换器,该热交换器处于热交换流路中;第一温度传感器,该第一温度传感器处于旁通流路中以用于生成第一温度信号;第二温度传感器,该第二温度传感器处于热交换流路中以用于生成第二温度信号;以及控制器,该控制器用于使用标准化增益系数来向冷却剂控制阀提供冷却剂控制阀命令信号。
本实用新型公开了一种插电式混合动力汽车热管理系统,所述系统包括:空调制冷回路、空调制热回路;空调制冷回路包括串联闭环连接的冷凝器装置、冷媒电磁阀、蒸发器、电动压缩机;空调制热回路包括空调高压电加热器冷却水制热回路和空调发动机冷却水制热回路。本实用新型的制冷及制热均可通过整车高压电独立完成,不受发动机的开启及关闭状态影响;解决了插电式混合动力车在纯电动模式下空调的制热和制冷问题;避免了传统汽油车在开启空调制冷时,动力消耗过大的问题,提高整车动力性;在混动模式下,保证空调舒适性的同时,减少了整车能源的消耗;可为电池提供制冷及制热,提升电池的续航里程,延长电池的使用寿命。
本实用新型实施例提供一种热管理装置和电池模组,涉及电池热管理技术领域。所述热管理装置应用于包括至少一层子模组的电池模组,所述热管理装置包括支撑件和设置于所述电池模组中的液冷扁管,所述液冷扁管包括多个子扁管以及多个折弯连接部,每两个相邻的所述子扁管之间形成用于容纳至少一层所述子模组的空间;每两个相邻的所述子扁管通过一个所述折弯连接部连通,所述支撑件位于至少一个所述折弯连接部内。本实用新型能够有效解决液冷扁管在使用过程中出现的扁管褶皱甚至塌陷问题。
本申请实施例提供一种热管理电池系统及新能源汽车,该系统包括电池模组和热管理装置,电池模组包括至少一层子模组和至少一个卡板组,每个卡板组包括相对设置的两个卡板,每个卡板上开设有用于固定单体电池的卡接孔,每个卡接孔的周侧间隔设置有多个凸台,每个凸台开设有第一通孔;热管理装置包括容纳电池模组的密封腔,密封腔的第一端面设置有至少一个进液口,第二端面上设置有与第一端面上的进液口对应的出液口,进液口和出液口通过第一通孔连通。通过上述设计,进入密封腔的液体介质可以与电池模组的各个区域接触,可以达到更好的热管理效果。
本实用新型提供一种电动汽车动力电池温度管理系统,包括电动压缩机、压缩机控制器、高压继电器、动力电池、电池管理控制模块、12V电源、第一通风管道、第二通风管道和电池箱体;其中,电池箱体的内部通过隔断分隔成不同的区间,在各区间内分别安装有电池,在电池的周围设置有温度传感器;第二通风管道分别安装在各区间内,第二通风管道与第一通风管道连通,第一通风管道与电动压缩机的出风口连通,电动压缩机的进风口通过空调管路与汽车空调连通,在空调管路内安装有由电磁阀控制器控制开闭的电磁阀,在第二通风管道内安装有感温蜡式风量调节阀。本实用新型利用实现不同电池组降温的同步性及保持降温后电池温度的一致性。
本实用新型公开一种热管理单元,包括集成组件以及与集成组件固定安装的基板,集成组件包括流体换热模块、第一流体切换模块、第二流体切换模块;基板包括第一安装板和第二安装板,第一安装板包括呈弯折设置的第一部分和第二部分,第一部分与流体换热模块直接或者间接固定,第一部分与第一流体切换模块直接或者间接固定,第二部分与第二安装板固定,第二流体切换模块与第二安装板相对应的一部分与所述第二安装板固定,其抗震性能较好。
本发明提供了一种动力电池热管理控制方法、动力电池热管理系统及车辆。其中,动力电池热管理控制方法包括:检测动力电池温度和冷却介质温度;根据所述动力电池温度所处的温度区间以及所述冷却介质温度的大小确定相应的温度控制模式,并根据确定的所述温度控制模式调节所述动力电池温度至目标温度,其中,不同的温度控制模式的能耗不同。本发明的动力电池热管理控制方法能够实现对动力电池温度控制的最优化,减少能量消耗的同时,将动力电池温度控制在最优工作温度范围内。