热传商务网-热传散热产品智能制造信息平台
信息列表
  • 混合动力系统的SCR后处理成本优先的热管理方法和系统

    本发明涉及发动机SCR后处理系统技术领域,具体涉及一种混合动力系统的SCR后处理成本优先的热管理方法和系统。本发明旨在解决加热SCR后处理系统温度成本高的问题。为此目的,本发明的SCR后处理成本优先的热管理方法包括:S12:建立加热SCR后处理系统所需动力电池电量的成本函数F1;S14:建立混合动力系统所需动力电池电量的成本函数F2;S16:建立关联成本函数F1与成本函数F2的成本函数F0;S18:确定成本函数F0的最小成本值V0,根据最小成本值V0确定动力电池分配至SCR后处理系统的电量A0。本发明通过成本函数F0的最小成本值V0确定动力电池分配至SCR后处理系统的电量A0,降低了加热SCR后处理系统的成本。

  • 基于48V弱混系统的SCR热管理系统及节能优先控制方法

    本发明公开了一种基于48V弱混系统的SCR热管理系统及其节能优先控制方法,该SCR热管理系统包括与具有48V电压的电池连接的整车控制单元,整车控制单元用于评估车辆状况、计算行车所需的能量、对电池的能量进行分配和发出工作指令,整车控制单元电连接有SCR后处理装置控制单元,SCR后处理控制单元依据所述工作指令控制SCR后处理装置中加热件的启动或停止。基于上述系统,根据车辆所需的能量对电池的能量进行有效分配,保证电池的使用寿命,车辆的动力系统和SCR加热均能够获得所需的能量,充分利用电能,能够使得整车的经济性得到保证,保证SCR后处理装置的反应温度,使处理效果得到提高,另外能消除SCR后处理装置的结晶风险,保证装置使用效果。

  • 基于48V弱混系统的SCR热管理系统及排放优先控制方法

    本发明属于48V弱混系统发动机SCR热处理技术领域,具体涉及一种基于48V弱混系统的SCR热管理系统及排放优先控制方法。本发明所述的排放优先控制方法包括以下步骤:计算当前电池的电量,计算当前车辆的需求扭矩,并需求扭矩计算驱动系统所需电池电量,计算安全系统所需电池电量,建立SCR的热模型,并根据热模型计算SCR的加热系统所需电池电量,若电池的电量大于安全系统和加热系统所需电池电量之和时,电池优先为安全系统和加热系统提供电量并将剩余电量分配给驱动系统。通过使用本发明的SCR热管理系统及排放优先控制方法,能够充分的利用电池的电量,合理进行电池电量的分配,降低了发动机尾气排放不达标的问题,减少了结晶现象的产生。

  • 一种适用于低温工况下新能源汽车的整车热管理系统

    本发明涉及热管理系统,具体涉及一种适用于低温工况下的新能源汽车整车热管理系统,包括乘员舱热管理系统、电池热管理系统以及电机电控热管理系统。乘员舱热管理系统包括乘员舱制冷回路和乘员舱制热回路。乘员舱制冷回路和乘员舱制热回路共用压缩机、气液分离器A D以及室外换热器HEX。乘员舱制冷回路还包括第一电磁阀、热力膨胀阀TXV以及室内蒸发器HEX。乘员舱制热回路还包括室内冷凝器HEX、电子膨胀阀EXV1以及第二电磁阀。乘员舱热管理系统与电池热管理系统共用室外换热器HEX。电池热管理系统采用二次回路系统,包括制冷剂回路和冷却液回路。制冷剂回路与冷却液回路通过chiller进行热量交换。

  • 一种微纳光学保温材料、制作方法及应用

    本发明公开了一种保温微纳光学材料,包括多孔材料为基底,以及敷设在该基底上的金属-损耗电介质膜层;所述基底表面具有亲水性。本发明引入基于纳米孔聚乙烯薄膜与超薄光学膜层的微纳光子学保温材料,利用纳米孔聚乙烯优良透汽特性,结合表面改性手段如亲水性增强等实现微纳光子学保温材料的高可穿着性。利用超薄光学膜层实现对热辐射散射的抑制与颜色管理,同时吸收太阳光辅助人体保温。该保温材料可应用在人体热管理,建筑物节能等应用中。

    2019-11-12 00:00:00 #浙江大学 #李强 #罗皓 #仇旻
  • 一种汽车发动机的冷却系统

    本发明公开了一种汽车发动机的冷却系统,包括:发动机水套,发动机水套上设置有第一排水孔和第二排水孔,还设置有循环出水口和循环进水口;热管理装置,固定连通于循环出水口;机械水泵,固定连通于循环进水口;小循环回水管,一端连通于热管理装置,另一端连通于机械水泵;暖风回水管,一端连通于热管理装置,另一端分别连通于第一排水孔和第二排水孔;油冷器回水管,一端连通于热管理装置,另一端连通于机械水泵;大循环回水管,一端连通于热管理装置,另一端连通于机械水泵;冷却器回水管,一端连通于热管理装置,另一端连通于第二排水孔。所述水套冷却系统提高了发动机的冷却效率并降低了发动机油耗,同时减少了发动机故障。

  • 一种锂离子电池液冷热管理系统稳健设计优化方法

    本发明属于机械产品的多学科设计优化技术领域,并具体公开了一种锂离子电池液冷热管理系统稳健设计优化方法。包括以下步骤:选择锂离子电池液冷热管理系统中的优化对象,并定义设计变量;抽取N组样本点,并获取每组样本点所对应的实际电池温度差和实际压降;通过模型验证和确认选择最佳代理模型;设定每组样本点的波动区间,在该波动区间中均匀选取每组样本点所对应的M组新的样本点;量化N×M组新的样本点所对应的理论电池温度差和理论压降的不确定性。本发明解决了传统设计方法中人为忽略参数和代理模型不确定因素导致设计结果不稳健,以此来获取锂离子电池液冷热管理系统稳健设计优化方法,从而提高锂离子电池产品的性能。

  • 一种电动汽车动力电池热管理系统、方法及电动汽车

    本发明提供一种电动汽车动力电池热管理系统、方法及电动汽车,热管理系统包括空调制冷回路、动力电池冷却回路以及液冷板;空调制冷回路上设有换热器;液冷板上设有电池包;动力电池冷却回路连接换热器,并通过换热器与空调制冷回路上的制冷剂实现热交换;动力电池冷却回路还连接液冷板,并通过动力电池冷却回路上的冷却液对液冷板上的电池包进行冷却;采用以上技术方案,可实现冷却液在液冷板内正反方向交替流动,从而达到交替换热的目的,使得液冷板上的电池包的温度趋于均匀一致,提高换热效率。

  • 一种车辆的电池热管理系统

    本发明提供了一种车辆的电池热管理系统,属于电池领域。该系统包括:热电半导体换热单元,包括热电半导体、第一空气换热器和第二空气换热器,第一空气换热器的一端连接有第一进风管路,另一端连接有第一出风管路,第二空气换热器的一端连接有第二进风管路,另一端连接有第二出风管路;电池包,其一端与第一出风管路相连,另一端连接有第三出风管路;风扇单元,设置于第三出风管路和第二出风管路的下游,用于将第三出风管路和第二出风管路的气流排出车辆的外部;和控制单元,与热电半导体换热单元和风扇单元均相连,用于根据电池包的温度控制施加于热电半导体的电压和风扇单元的功率。本发明的电池热管理系统冷却效果好、系统简单和成本较低。

  • 一种热管理装置的排气系统

    本实用新型公开了一种热管理装置的排气系统,包括水泵、换热器和待换热装置,所述水泵、换热器和待换热装置用管路连接,所述管路内设置有排气阀,所述排气阀由电动执行元件操纵。本实用新型通过改善现有的热管理装置的排气系统,并引入排气阀和电动执行元件,提高了排气速度,改善了排气效果。由于使用排气阀代替了排气管,也节省了胶管和扎带的使用,使得布置更为简单。

  • 一种用于车辆的高压电池结构及车辆

    本实用新型公开了一种用于车辆的高压电池结构及车辆,涉及车辆技术领域。所述用于车辆的高压电池结构包括电池上盖;电池箱体,所述电池上盖覆盖所述电池箱体的上部,并与所述电池箱体的上部可拆卸连接;和至少一组电池模组,位于所述电池箱体的内部;其中,所述电池箱体的下部包括下边框和底板,所述下边框包括首尾连接的第一下边框、第二下边框、第三下边框和第四下边框,所述底板位于所述下边框围成的区域内并与所述下边框固定连接,同时,所述第一下边框、所述第二下边框、所述第三下边框、所述第四下边框和所述底板的内部中空。本实用新型还提供了一种车辆,包括上述高压电池结构。本实用新型能够提高电池的热管理效率。

  • 一种汽车热管理系统及其电动商用车

    本实用新型公开了一种汽车热管理系统及其电动商用车,通过在热管理系统中将冷却液分两路设置,经过水泵,流入燃料电堆,再经过三通阀,流入散热器,合并后流入加热器形成回路;支路上的冷却液经过三通阀,当冷却液不经过散热器时,实现了冷却液的小循环,当冷却液流过散热器时,实现了冷却液的大循环的功能,通过冷却液的大循环和小循环可降低散热器上风扇的功耗;通过将加热器布置主回路上,用单个加热器可实现双支路的冷却液加热。当单燃料电堆工作时,冷却液温度逐步上升到燃料电堆最佳工作温度,当另一个燃料电堆开始工作时,可利用较为合适温度的冷却液流入燃料电堆,有效提高了燃料电堆的使用寿命。