本发明提供一种车辆热管理系统,通过与外界空气进行热交换,吸收电动机余热及保温等方式,在一般工作状态下提高了加热效率。即使在极端低温下,例如-40℃,相对于现有技术,依然有较高加热效率,从而提高新能源汽车的能源利用效率。
本发明涉及电动汽车热量管理技术领域,提供了一种动力电池热管理控制系统及方法,该系统包括:依次通过管路连接的热交换器、加热器、电子水泵M1及动力电池包,动力电池包的输出管路通过三通阀Y2与热交换器或发动机的输入管路连接,发动机的输出管路通过三通阀Y3与散热风扇或三通阀Y1的输入管路连接,散热风扇的输出管路与三通阀Y1的输入管路连接,三通阀Y1的输出管路与电子水泵M1或电子水泵M2的输入管路连接,电子水泵M2的输出管路与发动机的输入管路连接。动力电池热管理系统包括内循环及外循环,可以选择内循环或外循环对动力电池包进行不同程度加热或冷却,能更为精准的调控动力电池包的温度。
本发明公开一种电动汽车整车热管理系统,包括:空调换热回路、以及一个或多个用于调节汽车部件温度的热管理回路,所述空调换热回路的热交换器与至少一所述热管理回路的热交换器集成设置;所述热管理回路包括用于调节汽车电池温度的电池热管理回路、和 或用于对汽车驱动电机散热的电机散热回路。本发明通过将空调换热回路与其他热管理回路的热交换器集成设置,从而提高不同回路之间的集成率,有效减少整车体积。
一种相变复合式电池热管理系统,所述系统包括内含若干电池模组(10)的电池包(5);电池模组长度方向侧面相接触的空气管道(7),与电池模组宽度方向侧面相接触的相变器(11);空气管道设有第一翅片(9a),相变器上设有第二翅片(9b);电池模组上设有温度传感器(8);电池包前端分布有进气总管(2)与进气分管(6);后端分布有排气总管(14)与排气分管(12);进气总管上串联电加热器(3)和控制阀(4);排气总管上串联热电转换器(13)。本实用新型集电池散热、加热及热电转换于一体,利用高效的相变传热效率,保证电池工作的最佳温度范围,可以有效改善电池寿命,防止出现热失控现象。
本申请提供一种电动汽车的热管理系统、控制方法及电动汽车,其中,该系统包括:热泵空调子系统,用于向车厢内部空间提供制冷或制热服务;冷却液循环子系统,用于向所述电动汽车的至少部分电子部件提供冷却或加热服务;中间换热器,用于在所述热泵空调子系统和冷却液循环子系统之间需要换热时,进行热交换。通过本申请的方案,使得各个被管理区域间能够在需要时进行热交换,高效准确的对热量进行分配和利用,提高了能源综合利用率,优化了节能减排效果。
本发明涉及一种纯电动车辆放电提示方法及系统,所述方法包括:根据车辆性能,设置两种以上车辆放电模式;车辆放电过程中,实时获取电池最低单体温度与电池荷电状态;根据所述电池最低单体温度与所述电池荷电状态,提示选择不同的车辆放电模式。通过本发明,满足了客户对动力电池或车辆性能不同优先考虑。
本发明提供了一种氢能汽车燃料电池热管理系统,包括:水泵、PEMFC电堆、第一热电偶、PTC加热器、节温器、FCE散热器和三通阀;PEMFC电堆上设置有用于水进入的第一进水口和用于水排出的第一出水口;水泵的出水口连接至第一进水口,PEMFC电堆第一出水口和节温器的输入口连接;节温器的两个输出口分别连接至PTC加热器的输入口和FCE散热器的输入口;PTC加热器和FCE散热器的输出口分别连接至三通阀的两个输入口,三通阀的输出口连接至水泵的入水口;PEMFC电堆的第一出水口处设置有所述第一热电偶。本发明的有益效果是:采用水冷方式进行燃料电池冷却,可适用于更大功率的燃料电池,通过两个回路分别实现冷却水的降温和升温,从而对燃料电池的温度进行管理。
本发明涉及一种用于储能电站的电池能量控制系统的电池能量控制方法,其包括三层控制,分别通过电池模块控制器、电池族控制器以及储能集中控制器进行实现;通过监控系统与储能电池组控制系统间通讯实时监控电池的运行状态,同时为高层应用准备数据源;电池能量控制方法,其包括如下步骤:步骤一,实时采集电池信息;步骤二,在线SOC诊断;步骤三,在线故障处理;以及步骤四,电池插箱的运行温度进行监控,如果温度高于或者低于保护值,将输出启动信号,通过风机或保温储热装置调整温度;或者若温度达到设定的危险值,电池能量管理系统自动与系统保护机构联动,及时切断电池回路。
本发明涉及电动汽车的热管理领域,具体公开了一种低能耗电动汽车的热管理系统,包括第一循环水路、第二循环水路和第三循环水路,分别实现电机的冷却、动力电池的加热以及动力电池的冷却,三条循环水路之间通过第一三通阀和第二三通阀进行切换;在冷却组件中利用P型半导体和N型半导体通电所产生的冷端进行辅助冷却。本发明还公开了一种动力电池的加热方法。本发明所公开的热管理系统和动力电池加热方法将冷却和加热系统关联起来,并且避免了传统汽车热管理系统所采用的利用空调换热冷却电池和PTC加热电池的方式,能够有效降低电动汽车能量的消耗,增加续航能力,提高乘客舒适度。
本发明提供一种电动汽车综合热管理系统,本发明通过液压管道与电子阀的配合连接使得本发明在冬季和夏季都能实现准二级压缩,对冬季的制热效果大大提高;相比于传统整车热管理方案,此系统创新地将中间换热器换为三通道换热器,始终让电池冷却液参与到空调系统中,减少阀门的数量,简化了系统,降低了对智能控制系统的要求。装置能实现冬夏双运行,不但提高冷却效率、保证电池一致性,从而延长电池组系统的使用寿命,同时解决零下低温环境启动困难和充电困难问题,保证电池在不同环境温度条件下都能在其适宜的温度范围内运行,提高电池的循环寿命并且保证了乘客的热舒适性。
本发明公开了一种增程式电动汽车的陶瓷热敏电阻的余热回收管理系统,其结构包括:热敏电阻板、反扣卡板、针管线插槽、隔架块、引线电板、引线束筒、配电支座、并行串口槽、热管滑刷机构,本发明实现了运用热敏电阻板与热管滑刷机构相配合,直观的对热管内芯进行降温,再配合外部包裹夹持方槽的上下对位格槽的换热液管阀折流换热,形成一个对等换热操作,给余热回收引入排气管消耗有害气体形成一个加持升温效果,避免了沸水滞留现象,保障了余热回收管理系统搭配增程式电动汽车的陶瓷热敏电阻管运动达到热值负荷转移效果,给换热实现全新的刷架降温和对位液流换热隔衬效果,提高增程式电动汽车的热管理系统效率。
本发明提供一种能够不阻碍发动机的暖机或冷却,同时在早期确保高温的冷却水,进而利用此高温的冷却水对发动机以外的车辆装置进行加热的车辆的热管理系统。本发明的热管理系统(1)包括:冷却回路(3),供冷却水循环;热交换回路(5),供与电池(B)进行热交换的冷却水流动;流量控制阀(59),对从冷却回路(3)流向热交换回路(5)的冷却水的流量进行调整;格栅挡板(6),对朝向发动机室内的外部空气的导入量进行调整;以及控制单元(7),对流量控制阀(59)的开度及格栅挡板(6)的开度进行控制。控制单元(7)在冷却水温度低于节温器阀(33)的开阀温度时,将格栅挡板(6)及流量控制阀(59)控制为全闭状态,在冷却水温度高于开阀温度时,将格栅挡板(6)及流量控制阀(59)控制为打开状态。