本发明公开了一种相变材料用于极端环境的电子设备热管理系统及方法,包括稳压电源、指示灯、温敏开关、有机相变复合材料和电子设备。本发明的电子设备热管理系统解决了在极端环境下维持电子设备正常工作的问题。整个热管理系统结构简单,成本低廉,温敏开关可以被集成到有机相变复合材料中,同时无需添加额外的加热元件来实现对整个系统在极端环境下的温度控制目的。另外,热管理系统有效避免了额外的控制芯片引入,提升了整体系统的集约程度,并有效降低了能耗。本发明的电子设备热管理方法可避免电子设备因温度过高或过低而产生的性能下降以及损坏的问题,提高了整个热管理方法的智能性。
一种薄型电子装置的热管理系统,用以管理电子装置元件产生的热能,其包含具有内表面的机壳、热接触于电子元件的扁型微热导管以及一片状真空隔热元件设置于机壳的内表面与扁型微热导管之间。片状真空隔热元件包含有环型的焊接材料墙、第一片状材料、第二片状材料以及支撑柱,第一片状材料与第二片状材料藉由焊接材料墙形成低于一大气压的密闭空间。本发明的热管理系统藉由机壳、扁型微热导管以及片状真空隔热元件的协同运作对于微处理器元件产生的高密度热能发挥解热、阻热、导热以及散热等功能以降低微处理器及机壳表面热点的温度。
本发明提供了一种超级电容热管理系统,包括液冷装置、加热器、换热器、压缩机、冷凝器、超级电容;所述第一管道内设冷却介质;所述液冷装置通过第一管道分别与超级电容、加热器、换热器相连,使其冷却介质通过加热器传送至液冷装置内,以便液冷装置与超级电容进行热交换;所述换热器通过第二管道与压缩机、冷凝器相连,以便于换热器内多余的热量通过压缩机输送至冷凝器中,再通过冷凝器进行扩散。本发明所提供的超级电容热管理系统主要为超极电容提供稳定的工作环境温度,使超级电容处于良好的工作状态,该系统通过控制电加热器的开启与关闭,以保证电池系统周边环境温度的稳定性。
本发明涉及锂离子电池热管理技术领域及其方法,具体涉及一种方形锂电池组热管理结构。主要包括方形锂电池、半导体制冷片、相变材料。方形锂电池的两个侧面与半导体制冷片接触。半导体制冷片一面紧贴方形锂电池另一面紧贴相变材料。相变材料的两个侧面与半导体制冷片接触。本发明提供的电池组热管理结构在高倍率充放电时,电池产生热量经过半导体制冷片传至相变材料,利用相变材料冷却,若仍有进一步冷却需求则让半导体制冷片通电工作,对电池侧进行制冷,可使电池最高温度进一步下降,即使在环境温度较高时也能实现对电池组的散热功能。在零度以下低温时,对半导体制冷片通反向电流对电池侧加热,高效且低能耗,实现对电池组的加热功能。
本发明公开一种基于液冷的纯电动汽车锂电池热管理装置,包括电池箱体、电池箱盖和第一导热管、第二导热管和相变材料;第一导热管均匀分布在电池箱体内,且与电池箱体的底端固定连接;第一导热管内形成电池容纳腔,第一导热管的管壁内形成第一冷却通道;第二导热管设于第一导热管外侧,且与电池箱体间形成第二冷却通道;第二导热管内填充有相变材。本发明通过在电池外侧直接设置第一冷却通道,并将相变材料填充于第一冷却通道外侧,一方面可以先通过冷却液进行散热,再将热量传递给相变材料,使装置能够迅速降温,另一方面能在电池温度过高开启液冷时,减小电池与冷却液间的阻隔,进一步提高散热效率、降低能耗。
本发明提供一种应用于电动汽车动力电池的整车热管理系统,包括:液冷管路系统和原冷气管路系统,以实现对电动汽车动力电池的加热和冷却。本发明的一种应用于电动汽车动力电池的整车热管理系统对整车改动较小,易于实现;空间需求小,适用于空间体积不足的小型车辆;成本低。
本发明提出了基于热管与热泵空调的新能源汽车电池热管理系统及方法,该系统包括热泵空调系统和热管循环系统两个部分。热泵空调系统向乘客舱进行供冷和供热的同时用于提供电池箱热管理所需的冷、热量;热管系统用于冷、热量向电池箱的高效传导。电池需要降温时,系统以制冷模式运行,制冷剂或者外部空气提供的冷量由热管循环向电池箱进行的输送;电池需要加热时,系统以制热模式运行,制冷剂提供的热量由热管循环向电池箱输送。系统的制冷和制热模式切换通过热泵系统的四通换向阀内部管道调整、以及系统中的相关制冷剂阀和热管阀的关闭或打开来实现。该系统具有热传导速率快、效率高、温度均匀性好、节能性强的特点,应用前景广阔。
本发明公开了一种基于混合动力汽车的整车热管理系统与方法,系统包括压缩机、膨胀机、换热器、水箱、泵、散热器、发动机、阀门等部件,通过控制阀门的通断,可以调节不同的运行模式,实现了电池管理、余热回收、以及空调 热泵系统的结合,满足空调制冷、制热以及发动机和电池的散热与预热需求,各个工况不相互影响,能够单独完成,本发明同时通过耦合余热回收系统和空调 热泵系统、空调 热泵系统和电池管理系统,满足余热回收并且可以同时实现制冷 制热的需求、空调 热泵系统制冷冷却电池包的需求,满足混合动力汽车不同行驶工况下的热管理需求。整套系统集成度高,并且适用多种工况,可有效提升整车能源利用效率。
本申请涉及热交换技术领域,尤其涉及一种热管理系统,包括:制冷剂系统、冷却液系统和第一换热器,所述第一换热器包括第一换热部和第二换热部,所述第一换热部设置于制冷剂系统,所述第二换热部设置于所述冷却液系统,所述制冷剂系统包括:压缩机、第一室内换热器、第一节流装置、第二节流装置、室外换热器,所述第一节流装置和第二节流装置均为双向节流阀;所述冷却液系统包括电池换热组件、第二换热部、流体驱动装置,所述制冷剂系统的制冷剂与所述冷却液系统的冷却液通过所述第一换热部和所述第二换热部进行热交换。本申请的热管理系统特别适合二氧化碳作为冷媒,对电池换热组件产生的热量进行管理,且结构简单,系统能效更高。
本申请提供了一种热管理集成模块,涉及车辆热管理技术领域。该热管理集成模块包括安装支架、热交换器和至少一个流量分配组件,热交换器与流量分配组件均安装在安装支架上;安装支架内设有流量分配腔,热交换器和流量分配组件分别与流量分配腔连通,流量分配组件用于对经过热交换器后的冷却液进行分流。该热管理集成模块具有热交换和水路流量分配功能,结构简单、紧凑,占用空间小,方便安装。
本公开涉及一种车辆热管理系统及其控制方法、车辆,所述车辆热管理系统包括电池及电驱冷却液流路、采暖流路、换热器、第一四通阀,所述换热器同时设置在空调系统和所述电池及电驱冷却液流路中,所述电池及电驱冷却液流路上设置有电池、电机、电控和散热器,所述采暖流路上设置有PTC加热器和用于乘员舱采暖的暖风芯体,所述电池及电驱冷却液流路的一端与第一四通阀的第一端口相连,另一端与所述第一四通阀的第二端口相连,所述采暖流路的一端与所述第一四通阀的第三端口相连,另一端与所述第一四通阀的第四端口相连,所述电池及电驱冷却液流路和所述采暖流路上还设置有各自的循环泵。该车辆热管理系统热量利用率高,加热效率高。
本公开涉及一种车辆热管理系统及其控制方法、车辆,该车辆热管理系统包括电池及电驱热管理系统和发动机及暖风芯体热管理系统,空调系统与电池及电驱热管理系统通过换热器进行换热,发动机及暖风芯体热管理系统包括发动机冷却液流路、采暖流路和第一四通阀,发动机冷却液流路、采暖流路、以及电池及电驱热管理系统中电池所在的流路之间通过第一四通阀导通或断开,以实现冷却液流路、采暖流路以及电驱热管理系统中电池所在的流路之间热量的传递。